From rlpowell@digitalkingdom.org Mon Aug 23 11:36:27 2004 Received: with ECARTIS (v1.0.0; list lojban-beginners); Mon, 23 Aug 2004 11:36:27 -0700 (PDT) Received: from rlpowell by chain.digitalkingdom.org with local (Exim 4.34) id 1BzJgA-0007zk-SM for lojban-beginners@chain.digitalkingdom.org; Mon, 23 Aug 2004 11:36:27 -0700 Date: Mon, 23 Aug 2004 11:36:26 -0700 To: lojban-beginners@chain.digitalkingdom.org Subject: [lojban-beginners] Re: logical proofs? Message-ID: <20040823183626.GM3257@chain.digitalkingdom.org> References: <20040823153053.GI3257@chain.digitalkingdom.org> <20040823161720.89788.qmail@web41906.mail.yahoo.com> Mime-Version: 1.0 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline In-Reply-To: <20040823161720.89788.qmail@web41906.mail.yahoo.com> User-Agent: Mutt/1.5.6+20040722i From: Robin Lee Powell X-archive-position: 721 X-Approved-By: rlpowell@digitalkingdom.org X-ecartis-version: Ecartis v1.0.0 Sender: lojban-beginners-bounce@chain.digitalkingdom.org Errors-to: lojban-beginners-bounce@chain.digitalkingdom.org X-original-sender: rlpowell@digitalkingdom.org Precedence: bulk Reply-to: lojban-beginners@chain.digitalkingdom.org X-list: lojban-beginners The rest of you should note that this isn't even *close* to begginer Lojban. Oh, and xorxes is almost always right. :-) On Mon, Aug 23, 2004 at 09:17:20AM -0700, Jorge Llamb?as wrote: > > --- Robin Lee Powell wrote: > > On Mon, Aug 23, 2004 at 03:18:49AM -0400, Andrew Archibald wrote: > > > > > > Proof that there are infinitely many prime numbers: > > > > ni'o jarco lo du'u ci'i mulna'usle cei broda cu zasti > > I suggest {jarco lo du'u ci'i da mulna'usle}. Otherwise, I would be > tempted to ask {xo mulna'usle naku zasti}, "how many are the primes > that don't exist"? Heh. > > > Suppose that we have a finite list of prime numbers. > > > > .i sruma lo du'u mi'o ponse lo liste be me'i ci'i broda > > > > (This relies on a certain amount of listener generosity for "me'i > > ci'i"; "ci'i nai" is another possibility.) > > I like {me'i ci'i} for finite, but {ponse}? In what sense do we own > the list? I'd just say: {ru'a fo'a liste me'i ci'i broda} Forgot ru'a, thanks. What is it with you and fo'a? > > > Then construct the number that is one greater than the product of > > > all the prime numbers in the list. > > > > .i ba bo finti ko'a goi lo namcu poi ve jmina li pa lo simxu pilji > > be ro le se liste > > i ca'e ko'a sumji li pa lo simpi'i be ro lu'a fo'a Forgot ca'e too. sumji is better than jmina. > > > This number is, by a previous result (you could prove it if you > > > wanted), guaranteed to be divisible by some prime number - perhaps > > > itself. > > > > .i ko'a to se nibli lo pu nu jarco toi cu kakne lo nu fendi fi pa > > broda goi ko'e to cumki lo nu du ko'a toi > > i ko'a sei lo pu nu jarco cu nibli cu mulpi'i su'o broda goi ko'e no'u > ju'o cu'i ko'a I'm not as comfortable with sei as you. That's a very iffy use of ju'o cu'i; I'm not at all sure that ju'o cu'i is strong enough to eliminate the identicality of no'u. > mulpi'i: x1 pilji x2 x3 ije x1 e x2 e x3 mulnau You mean mulna'u there, yes? Why not just use pilji? > i.e. "x1 is divisible by x2" To me, "divisible" is more like fendi, but fair enough. > > > So no finite list can contain all the prime numbers. > > > > .i se ni'i bo lo liste be me'i ci'i broda cu na kakne lo nu vasru ro > > broda > > i seni'ibo no liste be me'i ci'i broda cu liste ro broda Ah, that's elegant. Thanks. [prime definition] > > da poi mulna'usle cei broda cu ma'u zei mulna'u gi'e mulna'u pilji > > po'o pa da > > Only "1" is mulna'u pilji pa da, all other primes have exactly two > natural divisors. Sorry, I meant "pa boi da". -Robin -- http://www.digitalkingdom.org/~rlpowell/ *** http://www.lojban.org/ Reason #237 To Learn Lojban: "Homonyms: Their Grate!"