Received: from mail-yh0-f64.google.com ([209.85.213.64]:45879) by stodi.digitalkingdom.org with esmtps (TLSv1:RC4-SHA:128) (Exim 4.76) (envelope-from ) id 1U9P0O-00010J-KZ; Sat, 23 Feb 2013 16:00:01 -0800 Received: by mail-yh0-f64.google.com with SMTP id z6sf818208yhz.9 for ; Sat, 23 Feb 2013 15:59:42 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=googlegroups.com; s=20120806; h=x-received:x-beenthere:x-received:x-received:received-spf :x-received:mime-version:in-reply-to:references:from:date:message-id :subject:to:x-original-sender:x-original-authentication-results :reply-to:precedence:mailing-list:list-id:x-google-group-id :list-post:list-help:list-archive:sender:list-subscribe :list-unsubscribe:content-type; bh=sE5vUdG6tjzfJ47uh81e7zjrn1sF8N5PvFmOAQ0GxQA=; b=ELFD835wvd4jxTs3HVAUIDnih5mnuKkbVIkt6ayP7ZPxGBXf5ZL1W/5Yo9CYLU/7rW iESainxN3IF7bJizuHKvtuHx0OUY8X25BMskNTEG1tfn0V5Jtgtyq08+WkWZTib2ZWCn Q/yuvg0LNdlyzMa+S6ovtx757/agFBY9jpy4CwxlnqDq9ucZGfYdm4rlzdEj67uSyDTH mLzkbS1L9K1C7080/hCf6cU6DJguVeA/rOsBmYxm4rIZriaY536KFbmdywCBzlbr1WyX QzEGqQd/qLxyjcDpByfK2UY4V3yzmxGqXXVnxhDDz+PKc+1lPTPox9I8qoXiQBI5XKTP 8kmA== DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=x-received:x-beenthere:x-received:x-received:received-spf :x-received:mime-version:in-reply-to:references:from:date:message-id :subject:to:x-original-sender:x-original-authentication-results :reply-to:precedence:mailing-list:list-id:x-google-group-id :list-post:list-help:list-archive:sender:list-subscribe :list-unsubscribe:content-type; bh=sE5vUdG6tjzfJ47uh81e7zjrn1sF8N5PvFmOAQ0GxQA=; b=xtUQ175g7X/OzFOCCunYzlLKHK6yw5SnN8eQqDv7d6GzsqDewazWDN3LJJmagE16i6 MnD7Fu5MRwE8hg8AgIrUAGEr1iENStH1nAcIaS3DH3xH2UyWlgKzyRHpOuQTr32eDK66 WEARZwBQqUbH4KzidFEfef7h4RDr1iiJBOyaF3TDllRQrPeuLk7H7C8d+DbxrtGwL4+s 6lUC6loUM/kECxqS+knUcnY27MgsoqlaV15ovihZ+aCdbSfqfSXYTT2IWcqO1khzwy9I BPhEMkFU6Ppnb+EBL9ArfAs536zpfLIsHVE5V58aGYbhQ89W2Gjr5qPcdgES4blRqT3Z 7ldg== X-Received: by 10.49.63.164 with SMTP id h4mr495767qes.39.1361663981951; Sat, 23 Feb 2013 15:59:41 -0800 (PST) X-BeenThere: lojban@googlegroups.com Received: by 10.49.127.142 with SMTP id ng14ls693031qeb.61.gmail; Sat, 23 Feb 2013 15:59:40 -0800 (PST) X-Received: by 10.58.191.68 with SMTP id gw4mr2767755vec.20.1361663980629; Sat, 23 Feb 2013 15:59:40 -0800 (PST) X-Received: by 10.58.191.68 with SMTP id gw4mr2767754vec.20.1361663980602; Sat, 23 Feb 2013 15:59:40 -0800 (PST) Received: from mail-ve0-f170.google.com (mail-ve0-f170.google.com [209.85.128.170]) by gmr-mx.google.com with ESMTPS id cl2si1288644vdb.2.2013.02.23.15.59.40 (version=TLSv1 cipher=ECDHE-RSA-RC4-SHA bits=128/128); Sat, 23 Feb 2013 15:59:40 -0800 (PST) Received-SPF: pass (google.com: domain of lytlesw@gmail.com designates 209.85.128.170 as permitted sender) client-ip=209.85.128.170; Received: by mail-ve0-f170.google.com with SMTP id 14so1503971vea.29 for ; Sat, 23 Feb 2013 15:59:40 -0800 (PST) X-Received: by 10.52.36.194 with SMTP id s2mr6994765vdj.119.1361663980436; Sat, 23 Feb 2013 15:59:40 -0800 (PST) MIME-Version: 1.0 Received: by 10.58.188.116 with HTTP; Sat, 23 Feb 2013 15:59:10 -0800 (PST) In-Reply-To: References: From: MorphemeAddict Date: Sat, 23 Feb 2013 18:59:10 -0500 Message-ID: Subject: Re: [lojban] Compositional Self-Reflexive Lujvo To: lojban@googlegroups.com X-Original-Sender: lytlesw@gmail.com X-Original-Authentication-Results: gmr-mx.google.com; spf=pass (google.com: domain of lytlesw@gmail.com designates 209.85.128.170 as permitted sender) smtp.mail=lytlesw@gmail.com; dkim=pass header.i=@gmail.com Reply-To: lojban@googlegroups.com Precedence: list Mailing-list: list lojban@googlegroups.com; contact lojban+owners@googlegroups.com List-ID: X-Google-Group-Id: 1004133512417 List-Post: , List-Help: , List-Archive: Sender: lojban@googlegroups.com List-Subscribe: , List-Unsubscribe: , Content-Type: multipart/alternative; boundary=20cf307c9fc0db883004d66d19ca X-Spam-Score: -0.1 (/) X-Spam_score: -0.1 X-Spam_score_int: 0 X-Spam_bar: / --20cf307c9fc0db883004d66d19ca Content-Type: text/plain; charset=ISO-8859-1 Why have a self-reflexive lujvo at all? Can't the various sumti be made equal to (or refer to the same thing as) any other sumti in a non-reflexive lujvo? How is self-reflexive different from reflexive? stevo On Sat, Feb 23, 2013 at 3:32 PM, Jacob Errington wrote: > These are impossible to make, due to the lack of a selbri meaning "x1 is > in all the ce'u-places of function x2". So I decided today, in IRC, to make > that selbri. This is the documentation of my quest. > > There are two types of reflexive selbri right now. Lujvo of the first kind > are created compositionally whereas lujvo of the second kind are created > non-compositionally. Non-self-reflexive selbri are produced with {simxu}, > e.g. {.i mi joi do simxu lo ka ce'u cinba ce'u} "You and I kiss each > other," which in a lujvo looks like {mi joi do cinbysi'u}, whereas the > self-reflexive counterpart is {mi cinba mi/vo'a} which in a lujvo looks > like this {mi sezycinba}. The full Lojban definition of {sezycinba} is {.i > lo ka sezycinba cu ka ko'a ce'ai ko'a cinba lo sevzi be ko'a} where {lo > sevzi be ko'a} is taken to reduce into plain {ko'a}. This seems pretty > hackish to me and is naljvajvo due to the invocation of {lo sevzi}. > > Making up a selbri to mean "x1 does x2 to itself" isn't as easy as it > seems. Well, I'm not telling the whole truth when I say that. It's easy to > make up a selbri meaning "x1 does x2 to itself" as long as the x2 is a > function with fixed arity. This is probably a high percentage of the cases: > {mi mi tavla} -> {.i mi broda lo ka ce'u tavla ce'u}, where broda is that > selbri. However, talking about yourself to yourself can't be expressed with > that same selbri, due to its restriction on the arity of the function. The > arity restriction arises from the naive lojban definition: > > let ko'e = lo ka ce'u broda ce'u > #1 {.i ka ko'a ko'a me'au ko'e} = {.i ka ko'a ko'a me'au lo ka ce'u broda > ce'u} = {.i ka ko'a broda ko'a} > Very straightforward. Make new selbri for every new {ko'a} you throw in. > Very poorly extensible system. > > This brought me to the very important side-quest of figuring out currying > in Lojban. {be} as we all know basically curries: {lo broda be ko'a} = > {zo'e noi ke'a broda ko'a} = {zo'e noi ke'a ckaji lo ka ce'u broda ko'a}. > Also as demonstrated right there, we can use {ckaji} (and therefore > {me'au}) to simulate the effect of {be}. This led me to produce the > following selbri which produces a function with the x1 is filled by a > definite parameter. I've called it kamni'oi for now, based on -kam- from > {ka} and -ni'oi- from -ni'o- from {cnino}. > > #2 {.i lo ka kamni'oi cu ka ko'a ko'e ko'i ce'ai ko'a ka ko'e me'au ko'i} > "x1 is the function derived from filling the x1 of x3 with x2." > e.g. {lo ka mi citka ce'u cu kamni'oi mi lo ka ce'u citka ce'u} > e.g. {lo du'u mi citka lo plise cu kamni'oi lo plise lo ka mi citka ce'u} > > Then I needed a selbri to get the arity of a function. This is possible by > converting bridi3 into a set and they using zilkancu. This selbri could > arguably be a lujvo, but I've decided to call it ka'ance'u, from {zilkancu} > and {ce'u}: > > #3 {.i lo ka ka'ance'u cu ka ko'a ko'e ce'ai ko'a se zilkancu lu'i lo te > bridi be ko'e} "x1 (li) is the arity of function x2." > e.g. {.i li mu ka'ance'u me'ei klama} > e.g. {.i li no ka'ance'u lo du'u mi citka lo plise} > > Finally, these are all the tools required to build the definition of the > self-reflexive selbri for arbitrary-arity functions. Call it {sevzike} for > now. > > #4 {.i lo ka sevzike cu ka ko'a ko'e ce'ai ge ganai lo ka'ance'u be ko'e > cu zmadu li no (fi dubu) gi sevzike lo kamni'oi be ko'e bei ko'a gi ganai > lo ka'ance'u be ko'e cu du li no (fi dubu) gi me'au ko'e} > e.g. {.i mi sevzike lo ka ce'u lumci ce'u} = {.i mi mi lumci} > e.g. {.i mi sevzike lo ka ce'u ce'u ce'u tavia} = {.i mi mi mi tavla} > e.g. {.i mi sevzike lo ka ce'u ce'u ce'u tavla da poi ce'u finti ke'a ca > lo nu ce'u citno mutce} = {.i mi mi mi tavla da poi mi finti ke'a ca lo nu > mi citno mutce} > > An important identity of this function is that when applied to unary > functions, it becomes equivalent to plain {ckaji} (or {me'au}). > {mi sevzike lo ka ce'u citka lo plise} = {mi ckaji lo ka ce'u citka lo > plise} = {.i mi citka lo plise} > > The function has an interesting quirk due to its definition, namely that > if a du'u is supplied in the x2, the x1 becomes completely irrelevant to > the relationship. > {sevzike lo du'u broda} has the same truth value regardless of the sumti > supplied in the x1. > > Now for an explanation of the definition. (The definition is recursive, > which I think is a first for Lojban definitions. Still, this is a proof of > concept of the sheer power that can be achieved with Lojban definitions.) > The function checks the arity of the x2. If it is greater than zero, it > curries the x1 into the x2 to yield an intermediate function which it then > passes back to itself. If the arity is zero, which will occur when all the > ce'u-places have had x1s curried into them, the function simply evaluates > the x2. > > With this selbri, it is now possible to create compositional > self-reflexive lujvo: > {.i mi cinba zei sevzike} = {.i mi sevzike lo ka ce'u ce'u cinba} = {.i mi > mi cinba}. > > If sevzike were a gismu and had a CVV rafsi, it would be possible to > neatly create shorter self-reflexive luvjo. > > Now that I understand how recursion can be used in lujvo and how to create > these arity conditions, it may be possible to define n-ary simxu, which we > had decided some time ago was not possible. > > .i mi'e la tsani mu'o > > -- > You received this message because you are subscribed to the Google Groups > "lojban" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to lojban+unsubscribe@googlegroups.com. > To post to this group, send email to lojban@googlegroups.com. > Visit this group at http://groups.google.com/group/lojban?hl=en. > For more options, visit https://groups.google.com/groups/opt_out. > > > -- You received this message because you are subscribed to the Google Groups "lojban" group. To unsubscribe from this group and stop receiving emails from it, send an email to lojban+unsubscribe@googlegroups.com. To post to this group, send email to lojban@googlegroups.com. Visit this group at http://groups.google.com/group/lojban?hl=en. For more options, visit https://groups.google.com/groups/opt_out. --20cf307c9fc0db883004d66d19ca Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Why have a self-reflexive lujvo at all? Can't the various sumti be made= equal to (or refer to the same thing as) any other sumti in a non-reflexiv= e lujvo? How is self-reflexive different from reflexive?=A0

stevo

On Sat, Feb 23, 2013 at 3:32 P= M, Jacob Errington <nictytan@gmail.com> wrote:
These are impossible to make, due to the lack of a selbri meaning "x1 = is in all the ce'u-places of function x2". So I decided today, in = IRC, to make that selbri. This is the documentation of my quest.

There are two types of reflexive selbri right now. Lujvo of the = first kind are created compositionally whereas lujvo of the second kind are= created non-compositionally. Non-self-reflexive selbri are produced with {= simxu}, e.g. {.i mi joi do simxu lo ka ce'u cinba ce'u} "You a= nd I kiss each other," which in a lujvo looks like {mi joi do cinbysi&= #39;u}, whereas the self-reflexive counterpart is {mi cinba mi/vo'a} wh= ich in a lujvo looks like this {mi sezycinba}. The full Lojban definition o= f {sezycinba} is {.i lo ka sezycinba cu ka ko'a ce'ai ko'a cinb= a lo sevzi be ko'a} where {lo sevzi be ko'a} is taken to reduce int= o plain {ko'a}. This seems pretty hackish to me and is naljvajvo due to= the=A0invocation=A0of {lo sevzi}.

Making up a selbri to mean "x1 does x2 to itself&q= uot; isn't as easy as it seems. Well, I'm not telling the whole tru= th when I say that. It's easy to make up a selbri meaning "x1 does= x2 to itself" as long as the x2 is a function with fixed arity. This = is probably a high percentage of the cases: {mi mi tavla} -> {.i mi brod= a lo ka ce'u tavla ce'u}, where broda is that selbri. However, talk= ing about yourself to yourself can't be expressed with that same selbri= , due to its restriction on the arity of the function. The arity restrictio= n arises from the naive lojban definition:

let ko'e =3D lo ka ce'u broda ce'u
#1 {.i ka ko'a ko'a me'au ko'e} =3D {.i ka ko'a ko= 9;a me'au lo ka ce'u broda ce'u} =3D {.i ka ko'a broda ko&#= 39;a}
Very straightforward. Make new selbri for every new {ko'a} you thr= ow in. Very poorly extensible system.

This brought= me to the very important side-quest of figuring out currying in Lojban. {b= e} as we all know basically curries: {lo broda be ko'a} =3D {zo'e n= oi ke'a broda ko'a} =3D {zo'e noi ke'a ckaji lo ka ce'u= broda ko'a}. Also as demonstrated right there, we can use {ckaji} (and= therefore {me'au}) to simulate the effect of {be}. This led me to prod= uce the following selbri which produces a function with the x1 is filled by= a definite parameter. I've called it kamni'oi for now, based on -k= am- from {ka} and -ni'oi- from -ni'o- from {cnino}.

#2 {.i lo ka kamni'oi cu ka ko'a ko'e ko= 9;i ce'ai ko'a ka ko'e me'au ko'i} "x1 is the func= tion derived from filling the x1 of x3 with x2."
e.g. {lo ka= mi citka ce'u cu kamni'oi mi lo ka ce'u citka ce'u}
e.g. {lo du'u mi citka lo plise cu kamni'oi lo plise lo ka mi = citka ce'u}

Then I needed a selbri to get the = arity of a function. This is possible by converting bridi3 into a set and t= hey using zilkancu. This selbri could arguably be a lujvo, but I've dec= ided to call it ka'ance'u, from {zilkancu} and {ce'u}:

#3 {.i lo ka ka'ance'u cu ka ko'a ko'e = ce'ai ko'a se zilkancu lu'i lo te bridi be ko'e} "x1 (= li) is the arity of function x2."
e.g. {.i li mu ka'ance= 'u me'ei klama}
e.g. {.i li no ka'ance'u lo du'u mi citka lo plise}
<= div>
Finally, these are all the tools required to build the d= efinition of the self-reflexive selbri for arbitrary-arity functions. Call = it {sevzike} for now.

#4 {.i lo ka sevzike cu ka ko'a ko'e ce'ai = ge ganai lo ka'ance'u be ko'e cu zmadu li no (fi dubu) gi sevzi= ke lo kamni'oi be ko'e bei ko'a gi ganai lo ka'ance'u b= e ko'e cu du li no (fi dubu) gi me'au ko'e}
e.g. {.i mi sevzike lo ka ce'u lumci ce'u} =3D {.i mi mi lumci= }
e.g. {.i mi sevzike lo ka ce'u ce'u ce'u tavia} =3D= {.i mi mi mi tavla}
e.g. {.i mi sevzike lo ka ce'u ce'u = ce'u tavla da poi ce'u finti ke'a ca lo nu ce'u citno mutce= } =3D {.i mi mi mi tavla da poi mi finti ke'a ca lo nu mi citno mutce}<= /div>

An important identity of this function is that when app= lied to unary functions, it becomes equivalent to plain {ckaji} (or {me'= ;au}).
{mi sevzike lo ka ce'u citka lo plise} =3D {mi ckaji l= o ka ce'u citka lo plise} =3D {.i mi citka lo plise}

The function has an interesting quirk due to its defini= tion, namely that if a du'u is supplied in the x2, the x1 becomes compl= etely irrelevant to the relationship.
{sevzike lo du'u broda}= has the same truth value regardless of the sumti supplied in the x1.

Now for an explanation of the definition. (The definiti= on is recursive, which I think is a first for Lojban definitions. Still, th= is is a proof of concept of the sheer power that can be achieved with Lojba= n definitions.) =A0The function checks the arity of the x2. If it is greate= r than zero, it curries the x1 into the x2 to yield an intermediate functio= n which it then passes back to itself. If the arity is zero, which will occ= ur when all the ce'u-places have had x1s curried into them, the functio= n simply evaluates the x2.

With this selbri, it is now possible to create composit= ional self-reflexive lujvo:
{.i mi cinba zei sevzike} =3D {.i mi = sevzike lo ka ce'u ce'u cinba} =3D {.i mi mi cinba}.

If sevzike were a gismu and had a CVV rafsi, it would be possibl= e to neatly create shorter self-reflexive luvjo.

N= ow that I understand how recursion can be used in lujvo and how to create t= hese arity conditions, it may be possible to define n-ary simxu, which we h= ad decided some time ago was not possible.

.i mi'e la tsani mu'o

--
You received this message because you are subscribed to the Google Groups &= quot;lojban" group.
To unsubscribe from this group and stop receiving emails from it, send an e= mail to lojban+unsubscribe@googlegroups.com.
To post to this group, send email to lojban@googlegroups.com.
Visit this group at http://groups.google.com/group/lojban?hl=3Den.
For more options, visit https://groups.google.com/groups/opt_out.
=A0
=A0

--
You received this message because you are subscribed to the Google Groups &= quot;lojban" group.
To unsubscribe from this group and stop receiving emails from it, send an e= mail to lojban+unsubscribe@googlegroups.com.
To post to this group, send email to lojban@googlegroups.com.
Visit this group at http://groups.google.com/group/lojban?hl=3Den.
For more options, visit https://groups.google.com/groups/opt_out.
 
 
--20cf307c9fc0db883004d66d19ca--