Return-Path: From: cbmvax!uunet!ee.mu.OZ.AU!nsn Message-Id: <9107010349.AA15942@munagin.ee.mu.OZ.AU> To: lojban-list@snark.thyrsus.com Cc: nsn@ee.mu.OZ.AU Subject: Mex, 2nd installment Organisation: Department of Electrical Engineering, University of Melbourne Smiley-Convention: %^) Date: Mon, 01 Jul 91 13:49:49 +1000 Status: RO X-From-Space-Date: Mon Jul 1 07:43:59 1991 X-From-Space-Address: cbmvax!uunet!ee.mu.OZ.AU!nsn 2nd Mex example: a differential equation thingy. From p. 81, Zill, I forget the title. p.81, Zill di'e bipamoi lo'i papri be la zil. Example ni'o di'e mupli Consider the problem y' = y - 1 y(0) = 2. .i ko pensi le nabmi po'u la'elu li sa'o 1boi .y'ybu du li - y'ybu 1 .ije li ma'o .y'ybu.boi 0 du li 2 li'u {First argument of derivative: degree. 2nd: derivand. 3rd: variable of derivation. for example, dy/dx is sa'o 1boi y'ybu ge'a xy.} Use Picard's method to find the approximations y\1, y\1, y\3, y\4. .i ko pilno le tadji pe me'e la piKARD. lenu fakci le'i jbimi'u po'u .y'ybuxipa ce'o .y'ybuxire ce'o .y'ybuxici ce'o .y'ybuxivo Solution ni'o di'e nabmi jalge {a stuffed tanru, but ho hum} By identifying x\0 = 0, y\0 (x) = 2, .i fau ru'a lenu ge li xy.xi0 du li 0 ge li ma'o .y'ybu.xi0boi xy. du li 2 and f(t, y\[n-1] (t)) = y\[n-1] (t) - 1, gi li ma'o fyboi tyboi ma'o .y'ybuxi vei ny.vu'u 1 ve'o ty du li - ma'o .y'ybuxi vei ny.vu'u 1 ve'o tyboi 1 kei {I probably stuffed up them subscripts bad, huh? Anyone know any better?} equation (3) becomes le cimoi be le'i mekso cu binxo me'o y\n (x) = 2 + S [0 x] (y\[n-1] (t) - 1) dt, n in N {S is integral sign, [0 x] are bounds of integration, N is set of natural numbers} ma'o du ma'o .y'ybu xinyboi xy + 2 ri'o - ma'o .y'ybuxi vei ny.vu'u 1 ve'o tyboi 1boi ty ge'a 0bi'ixyboi va'o lenu li ny. cu cmima lo'i namcynaturale. {First argument of integral: integrand, 2nd: variable of integration, 3rd: integral bounds.} Shit this is boring. Anyone got any comments on this text?