From sentto-44114-3456-962952711-mark=kli.org@returns.onelist.com Fri Jul 07 06:50:02 2000 Return-Path: Delivered-To: shoulson-kli@meson.org Received: (qmail 15393 invoked from network); 7 Jul 2000 06:50:00 -0000 Received: from zash.lupine.org (205.186.156.18) by pi.meson.org with SMTP; 7 Jul 2000 06:50:00 -0000 Received: (qmail 4539 invoked by uid 40001); 7 Jul 2000 06:51:53 -0000 Delivered-To: kli-mark@kli.org Received: (qmail 4536 invoked from network); 7 Jul 2000 06:51:52 -0000 Received: from jk.egroups.com (208.50.144.83) by zash.lupine.org with SMTP; 7 Jul 2000 06:51:52 -0000 X-eGroups-Return: sentto-44114-3456-962952711-mark=kli.org@returns.onelist.com Received: from [10.1.10.35] by jk.egroups.com with NNFMP; 07 Jul 2000 06:51:50 -0000 Received: (qmail 11416 invoked from network); 7 Jul 2000 06:51:51 -0000 Received: from unknown (10.1.10.26) by m1.onelist.org with QMQP; 7 Jul 2000 06:51:51 -0000 Received: from unknown (HELO argo.bas.bg) (195.96.224.7) by mta1 with SMTP; 7 Jul 2000 06:51:49 -0000 Received: from banmatpc.math.bas.bg (root@banmatpc.math.bas.bg [195.96.243.2]) by argo.bas.bg (8.11.0.Beta1/8.9.3/Debian 8.9.3-6) with ESMTP id e676paS22464 for ; Fri, 7 Jul 2000 09:51:38 +0300 Received: from iad.math.bas.bg (iad.math.bas.bg [195.96.243.88]) by banmatpc.math.bas.bg (8.9.3/8.9.3) with SMTP id JAA12151 for ; Fri, 7 Jul 2000 09:51:31 +0300 Message-ID: <39657E2D.45E9@math.bas.bg> Organization: Institute for Mathematics and Computer Science X-Mailer: Mozilla 3.01Gold (Win95; I; 16bit) To: The Lojban List References: From: Ivan A Derzhanski MIME-Version: 1.0 Mailing-List: list lojban@egroups.com; contact lojban-owner@egroups.com Delivered-To: mailing list lojban@egroups.com Precedence: bulk List-Unsubscribe: Date: Fri, 07 Jul 2000 09:52:30 +0300 Reply-To: iad@math.bas.bg Subject: Re: [lojban] 2 maths questions Content-Type: text/plain; charset=US-ASCII Content-Transfer-Encoding: 7bit John Cowan wrote: > On Fri, 7 Jul 2000, Thorild Selen wrote: > > What you really want to say is probably that the set of even > > numbers is a _proper subset_ of the set of integers, so there > > is certainly a well known name for this relation. > > Yes, but it isn't quantifiable. I want to able to say that > the set of integers is twice as "thick" ("dense" is already > used for a different property) as the set of evens [...]. And in the same way the set of all integers that aren't divisible by 3 is twice as thick as the set of integers that are, although neither is a subset of the other (their intersection is empty). Given that one can't obtain a (de)finite number by dividing two infinities, the best we can do is talk about (*) |X \cap S| / |Y \cap S|, where X and Y are our two sets and S is an unbroken subset of the integers, S = {k | m <= k <= n} for some m <= n. Do we then take the limit of (*) for n-m -> \infty? > What I don't know is whether this notion of "thickness" can be > extrapolated beyond the sets which are multiples of some integer. It can apply to some such sets (the integers whose decimal representation ends in either 1 or 9 are twice as thick as those ending in 0), but very many interesting sets don't have a constant thickness. --Ivan ------------------------------------------------------------------------ Free, Unlimited Calls Anywhere! Conference in the whole family on the same call. Let the fights begin! Visit Firetalk.com - Click below. http://click.egroups.com/1/5476/4/_/17627/_/962952708/ ------------------------------------------------------------------------ To unsubscribe, send mail to lojban-unsubscribe@onelist.com