From phma@oltronics.net Fri Feb 02 18:04:12 2001 Return-Path: X-Sender: phma@ixazon.dynip.com X-Apparently-To: lojban@yahoogroups.com Received: (EGP: mail-7_0_2_1); 3 Feb 2001 02:04:00 -0000 Received: (qmail 99106 invoked from network); 3 Feb 2001 02:03:58 -0000 Received: from unknown (10.1.10.27) by l8.egroups.com with QMQP; 3 Feb 2001 02:03:58 -0000 Received: from unknown (HELO neofelis.ixazon.lan) (207.15.133.42) by mta2 with SMTP; 3 Feb 2001 02:03:57 -0000 Received: by neofelis.ixazon.lan (Postfix, from userid 500) id 31CB23C55D; Fri, 2 Feb 2001 21:19:44 -0500 (EST) Reply-To: phma@oltronics.net To: lojban@yahoogroups.com Subject: Quaternions Date: Fri, 2 Feb 2001 21:11:48 -0500 X-Mailer: KMail [version 1.0.29.2] Content-Type: text/plain MIME-Version: 1.0 Message-Id: <01020221194408.22864@neofelis> Content-Transfer-Encoding: 8bit Sender: phma@ixazon.dynip.com From: Pierre Abbat X-Yahoo-Message-Num: 5296 I propose the following notation for quaternions: pa = ka'oxino = 1 ka'o = ka'oxipa = i ka'oxire = j ka'oxici = k Thus voka'omuka'oxiciso = 4+5i+9k. But if someone for some other reason wanted to subscript ka'o with a number greater than 9, we'd run into trouble. (The most I can imagine subscripting ka'o with is 7 for octonions.) Another way to say it would be: pa = 1 ka'opa = i ka'oka'opa = j ka'oka'oka'opa = k so 4+5i+9k would be voka'omuka'oka'oso. Comments? phma