From bloke_without_a_favourite_colour@yahoo.co.uk Sat Nov 10 06:23:29 2001 Return-Path: X-Sender: bloke_without_a_favourite_colour@yahoo.co.uk X-Apparently-To: lojban@yahoogroups.com Received: (EGP: mail-8_0_0_1); 10 Nov 2001 14:23:29 -0000 Received: (qmail 74000 invoked from network); 10 Nov 2001 14:23:28 -0000 Received: from unknown (216.115.97.171) by m9.grp.snv.yahoo.com with QMQP; 10 Nov 2001 14:23:28 -0000 Received: from unknown (HELO n27.groups.yahoo.com) (216.115.96.77) by mta3.grp.snv.yahoo.com with SMTP; 10 Nov 2001 14:23:28 -0000 X-eGroups-Return: bloke_without_a_favourite_colour@yahoo.co.uk Received: from [10.1.10.133] by n27.groups.yahoo.com with NNFMP; 10 Nov 2001 14:23:28 -0000 Date: Sat, 10 Nov 2001 14:23:26 -0000 To: lojban@yahoogroups.com Subject: Re: possible A-F... Message-ID: <9sjd8u+epjo@eGroups.com> In-Reply-To: <9p8l13+gfff@eGroups.com> User-Agent: eGroups-EW/0.82 MIME-Version: 1.0 Content-Type: text/plain; charset=ISO-8859-1 Content-Length: 9301 X-Mailer: eGroups Message Poster X-Originating-IP: 62.64.191.187 From: bloke_without_a_favourite_colour@yahoo.co.uk X-Yahoo-Profile: bloke_without_a_favourite_colour X-Yahoo-Message-Num: 12004 --- In lojban@y..., thinkit8@l... wrote: > ok, making sure not to look at historical numerals, which is looking > outward for answers instead of inward, i sketched what could by > symbols A-F. basically i looked at a standard 8-segment display and > saw what was easy to draw and also didn't have the rotation problem > of 6 and 9. here's what i came up with: > > *** * * * *** *** > * * * * * * > * *** *** *** * *** > * * * * * * > * * * * *** * > > that's 10-15, in order. now all i have to do is wait generations to > have hexadecimal accepted, then more generations for the numbers to > be standardized. The display actually only has 7 segments. Also, the representations of 2 and 5 are reflections of each other. Here are all the 128 (2^7) possibilities: *** * * *** *** *** *** *** *** * * * * * * * * * * * * * * *** * * * * *** * * * * *** * * * * * * * * *** * * *** * * * * * * * *** *** *** *** *** * * * * * * * * * * * * * * * *** * * * * *** *** *** * * * * * * *** * * * * * * * * * * * * * * * * *** * * *** * * *** * * *** *** * * *** *** *** *** *** *** *** *** *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * * * *** * * * * *** *** *** * * * * *** * * * * * * *** *** *** * * * * * * * * * * * * * * *** * * *** * * *** *** * * *** * * *** * * * * * * * * * *** *** *** *** * * * * * * * * * * * * * * * * * * * * * * *** *** *** * * * * * *** *** *** * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * *** *** * * *** * * *** *** * * *** *** *** * * *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** * * * * * * * * * * * * * * * * *** *** *** * * * * * *** *** *** * * * * * *** *** *** * * *** * * * * * * * * * * * * * * * * * * * * * *** * * *** *** * * *** * * *** *** * * *** *** *** * * * * * * * * * * * * * * * * * * * *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * *** *** * * * * * * *** *** *** * * *** *** *** * * *** *** *** *** * * * * * * * * * * * * * * * * * * * * * * *** * * *** *** * * *** *** *** * * *** *** *** *** * * *** *** *** *** *** *** *** *** *** *** *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** *** *** * * *** *** *** * * *** *** *** *** * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** *** * * *** *** *** * * *** *** *** *** * * *** *** *** *** * *** *** *** *** *** *** * * *** * * * * * * * * * * * * * * * *** *** *** *** * * *** *** *** *** * * * * * * * * * * * * * * * * *** * * *** *** *** *** *** *** *** Eliminating the 1 possibility with all 7 segments blank (because that one is actually just a space, so if this digit comprised the complete number then the number would probably not be recognised as being there, if this digit did not comprise the complete number and was at the beginning or end of the number then the number would probably be mistakenly identified as a different number, and if this digit did not comprise the complete number and was not at the beginning or end of the number then the number would probably be mistakenly identified as two separate numbers separated by a space) and the 47 possibilities that aren't connected (because they could be mistakenly thought to be two separate numbers) leaves all the following 80 possibilities: *** * * *** *** * * * * * * * * * * * * * * *** * * * * *** * *** * *** *** * * * * * * * * * * * * *** * * * * *** *** *** *** *** *** *** * * * * * * * * *** * * * * * * * * * * * * * * * * * * *** * *** * *** *** *** * *** *** * *** *** *** * * *** * * * * * * * * * * * * * * * * * * *** * * *** * * *** *** *** *** *** *** *** *** *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** *** * *** *** * *** *** *** *** *** * * *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * *** * * *** * * * * *** *** *** * * *** *** * *** *** *** *** *** *** *** *** *** *** *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** *** *** * * * * * * *** *** *** * * *** *** *** * * *** *** * * * * * * * * * * * * * * * * * * * * * * * * * *** *** * * * * *** *** * * *** *** *** * * *** *** *** * * *** * * * * * * *** *** *** *** *** *** * * *** * * * * * * * * * * * * * * * * * * * * *** * * *** *** *** *** *** * * *** *** *** *** * * * * * * * * * * * * * * * * * * * * * *** *** *** *** * * *** *** *** *** *** *** *** Organising all these 80 possibilities into rows so that each row contains only reflections and rotations of the other possibilities in that row gives all the following 29 rows: *** *** * * * * * * * * * * * * *** *** *** * * * * * * * * *** *** * * * * *** *** *** *** * * * * * * * * * * * * * * *** * * * * * * * * *** *** *** * * *** *** *** *** * * *** *** *** *** * * * * * * * * * * * * * * * * *** *** * * * * *** *** * * * * * * * * *** *** * * * * * * * * *** *** * * * * *** * * *** *** * * *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** * * * * * * * * * * * * *** *** *** *** * * * * * * * * * * * * *** *** * * * * * * * * *** *** *** *** * * * * * * * * *** *** *** * * * * * * * * * * * * * * * * *** *** *** *** *** * * * * * * * * * * * * * * * * * * * * *** *** *** *** *** *** * * * * * * * * * * *** *** *** *** * * * * * * * * * * *** *** *** *** * * *** *** * * *** *** *** *** * * *** *** * * *** *** * * * * *** * * * * *** * * * * * * *** *** * * * * * * *** *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** *** * * * * * * *** *** * * *** * * *** 10 possibilities are already used for the digits 0 to 9. Here are all 10: *** * *** *** * * *** *** *** *** *** * * * * * * * * * * * * * * * * * *** *** *** *** *** * *** *** * * * * * * * * * * * * * *** * *** *** * *** *** * *** *** Eliminating these 10 and all 10 reflections and rotations of them (20 possibilities altogether) leaves all the following 60 possibilities organised into all the following 21 rows: *** *** * * * * * * * * * * * * *** *** *** * * * * * * * * *** *** * * * * *** *** *** *** * * * * *** * * * * * * * * *** *** *** * * *** *** *** *** * * *** *** * * * * *** *** * * * * * * * * *** *** * * * * * * * * *** *** * * * * *** * * *** *** * * *** *** *** * * * * * * * * * * * * * * * * * * * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * *** *** *** *** * * * * * * * * *** *** *** *** * * * * * * * * *** *** *** * * * * * * * * * * * * * * * * *** *** *** *** *** * * * * * * * * * * * * * * * * * * * * *** *** *** *** *** *** * * * * * * * * * * *** *** *** *** * * * * * * * * * * *** *** * * * * *** * * * * *** * * * * * * *** *** * * * * * * *** So you could choose any 6 of the above 60 possibilities as long as each one was from a different one of the 21 rows, one for each of the 6 hexadecimal digits A to F, which are used to represent numbers 10 to 15. Incidentally, why do you want hexadecimal to become accepted anyway? What's wrong with binary? ;) Sincerely, Robert