From get.oren@gmail.com Mon Dec 21 08:23:56 2009 Received: from mail-pz0-f193.google.com ([209.85.222.193]) by chain.digitalkingdom.org with esmtp (Exim 4.69) (envelope-from ) id 1NMl2x-00015p-I2 for lojban-list@lojban.org; Mon, 21 Dec 2009 08:23:56 -0800 Received: by pzk31 with SMTP id 31so3584354pzk.28 for ; Mon, 21 Dec 2009 08:23:41 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:mime-version:sender:received:in-reply-to :references:from:date:x-google-sender-auth:message-id:subject:to :content-type; bh=O4yEm2BREBz8YTcBU05S4u59r8MmPtmJMjvFFLjWyD0=; b=JOGIfaGKK5apr/+qZBSvILFxLY8zzUsH3Z2FiMs2pZaObtcrdeGi8+Zq0Z0WlM7rWo y7lm7RKUhnN2sHdrNnQoiT6mXuyRnVtQhQIyxkcVup7GGIpN1xOi5PSF1j+kcp2dQDjz hBskVjaeKOusU/ueZumDtPTtMYR/Za/BEoVqg= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:sender:in-reply-to:references:from:date :x-google-sender-auth:message-id:subject:to:content-type; b=jZ758PZg3ttVnLHO8lFIRe060vRgoH06nfY35DaRc0vDXUIyvWnt2BFwsPICbV5D2n JsEQQIqQ6CNpjsIG+dXfU6E3tgtHjvvlbvCO1E8wBPGs8bBKFv/PfpJUUhzWoKDXvRmu MTkpOIH993whofthnGl9Lzd3jao+grAiImvfI= MIME-Version: 1.0 Sender: get.oren@gmail.com Received: by 10.143.25.15 with SMTP id c15mr4953637wfj.163.1261412619669; Mon, 21 Dec 2009 08:23:39 -0800 (PST) In-Reply-To: <27513e550912210812m11bdb70eh94aedf91ab140639@mail.gmail.com> References: <702226df0912210730i37f4f966xc4f39d6e0a7623d8@mail.gmail.com> <27513e550912210808s2a9215a7kebcf109fd35fcb02@mail.gmail.com> <27513e550912210812m11bdb70eh94aedf91ab140639@mail.gmail.com> From: =?UTF-8?B?55m95p2+IE9yZW4=?= Date: Tue, 22 Dec 2009 00:23:19 +0800 X-Google-Sender-Auth: f067238461097452 Message-ID: <27513e550912210823n6ab20e3ag35dad2cd59a11395@mail.gmail.com> Subject: Re: [lojban] interlingua translation and first-order logic To: lojban-list@lojban.org Content-Type: multipart/alternative; boundary=001636e1f8441c5361047b3f8307 --001636e1f8441c5361047b3f8307 Content-Type: text/plain; charset=ISO-2022-JP Content-Transfer-Encoding: 7bit *Sorry if I double posted; I sent from the wrong account and want to make sure I got through* I had a brief research position at university of Rochester (NY state) under Dan Gildea, where they have close-knit AI, computational linguistics and neurological programs. I worked on a CYK decoder for Chinese English machine translation, and the first several weeks of my research were basically coming to terms with the history of Machine Translation (MT) as outlined in that paper: the rise of computational linguistics in the 50s and 60s and then the adaptation to statistical models in the 80s and 90s. As for where 'getting computers understanding predicate logic' is, I'm not sure what to say, but I always thought that first-order predicate logic was the foundation of declarative languages like prolog. Anyhow, the state of the program at U of R (which I'm told is pretty advanced) is investigating hybrid models of various dynamic programming algorithms to raise BLEU scores-- everyone's invested in the statistical (i.e. NOT interlingual) approach, and trying to figure out how to maximize performance. I think that there would be real advantages to using lojban as an interlingual medium, instead of essentially trying to imitate humans through machine learning, but when you have huge corpora of bilingual (or better) natural language data and virtually no bilingual corpora with lojban, it's just infeasible. There were a few attempts to use Esperanto for that purpose a while back (even before this paper), and no one seems to cite them, except as failures. Here's a really good up-to-date intro to MT: http://docs.google.com/Doc?docid=0AYZKIeNnTBe2ZGd4azRrZm1fNTI2ZnpnYmRrZ2g And a powerpoint version with lots of diagrams: http://people.csail.mit.edu/people/koehn/publications/tutorial2003.pdf Here's the origin of those two documents, if you're interested in more: http://www.statmt.org/ mu'o mi'e .ku'us. On Tue, Dec 22, 2009 at 00:12, 白松 Oren wrote: > Wow, sorry for those typos! (typoes?) > > Here's the origin of those two documents, if you're interested in more: > http://www.statmt.org/ > > > > On 2009-12-21, 白松 Oren wrote: > > I had a brief research position at university of Rochester (NY state) > > under Dan Gildea, where they have a close-knit AI, computational > > linguistics and neurological programs. I worked on a CYK decoder for > > Chinese English machine translation, and the first several weeks of my > > research were basically coming to terms with the history Machine > > translation outlined in that paper; the rise of computational > > linguistics in the 50s and 60s and then the adaptation to statistical > > models in the 80s and 90s. > > > > As for where 'getting computers understanding predicate logic' is, I'm > > not sure what to say, but I always thought that first-order predicate > > logic was the foundation of declarative languages like prolog. > > > > Anyhow, the state of the program at U of R (which I'm told is pretty > > advanced) is investigating hybrid models of various dynamic > > programming algorithms to raise BLEU scores-- everyone's invested in > > the statistical (i.e. NOT interlingual) approach, and trying to figure > > out how to maximize performance. I think that there would be real > > advantages to using lojban as an interlingual medium, instead of > > essentially trying to imitate humans through machine learning, but > > when you have huge corpora of bilingual (or better) natural language > > data and virtually no bilingual corpora with lojban, it's just > > infeasible. There were a few attempts to use Esperanto for that > > purpose a while back (even before this paper), and no one seems to > > cite them, except as failures. > > > > Here's a really good up-to-date intro to MT: > > > http://docs.google.com/Doc?docid=0AYZKIeNnTBe2ZGd4azRrZm1fNTI2ZnpnYmRrZ2g > > > > And a powerpoint version with lots of diagrams: > > http://people.csail.mit.edu/people/koehn/publications/tutorial2003.pdf > > > > mu'o mi'e .ku'us. > > > > > > On 2009-12-21, Jon "Top Hat" Jones wrote: > >> I recently came across > >> thispaper, which > >> discusses various methods of machine translation methods. In it > >> it is mentioned that computers are not able to understand first-order > >> (i.e. > >> predicate) logic. Since the paper is nearly 2 decades old, I was > >> wondering > >> if anyone here knows what progress there has been in making it > >> understandable by computers. > >> > >> > >> -- > >> mu'o mi'e .aionys. > >> > >> .i.a'o.e'e ko klama le bende pe denpa bu > >> > > > --001636e1f8441c5361047b3f8307 Content-Type: text/html; charset=ISO-2022-JP Content-Transfer-Encoding: base64 PGRpdiBkaXI9Imx0ciI+KlNvcnJ5IGlmIEkgZG91YmxlIHBvc3RlZDsgSSBzZW50IGZyb20gdGhl IHdyb25nIGFjY291bnQgYW5kIHdhbnQgdG8gbWFrZSBzdXJlIEkgZ290IHRocm91Z2gqPGJyPjxi cj5JIGhhZCBhIGJyaWVmIHJlc2VhcmNoIHBvc2l0aW9uIGF0IHVuaXZlcnNpdHkgb2YgUm9jaGVz dGVyIChOWSBzdGF0ZSk8YnI+CnVuZGVyIERhbiBHaWxkZWEsIHdoZXJlIHRoZXkgaGF2ZSBjbG9z ZS1rbml0IEFJLCBjb21wdXRhdGlvbmFsPGJyPgpsaW5ndWlzdGljcyBhbmQgbmV1cm9sb2dpY2Fs IHByb2dyYW1zLiBJIHdvcmtlZCBvbiBhIENZSyBkZWNvZGVyIGZvcjxicj4KQ2hpbmVzZSBFbmds aXNoIG1hY2hpbmUgdHJhbnNsYXRpb24sIGFuZCB0aGUgZmlyc3Qgc2V2ZXJhbCB3ZWVrcyBvZiBt eTxicj4KcmVzZWFyY2ggd2VyZSBiYXNpY2FsbHkgY29taW5nIHRvIHRlcm1zIHdpdGggdGhlIGhp c3Rvcnkgb2YgTWFjaGluZTxicj4KVHJhbnNsYXRpb24gKE1UKSBhcyBvdXRsaW5lZCBpbiB0aGF0 IHBhcGVyOiB0aGUgcmlzZSBvZiBjb21wdXRhdGlvbmFsPGJyPgpsaW5ndWlzdGljcyBpbiB0aGUg NTBzIGFuZCA2MHMgYW5kIHRoZW4gdGhlIGFkYXB0YXRpb24gdG8gc3RhdGlzdGljYWw8YnI+Cm1v ZGVscyBpbiB0aGUgODBzIGFuZCA5MHMuPGJyPgo8YnI+CkFzIGZvciB3aGVyZSAmIzM5O2dldHRp bmcgY29tcHV0ZXJzIHVuZGVyc3RhbmRpbmcgcHJlZGljYXRlIGxvZ2ljJiMzOTsgaXMsIEkmIzM5 O208YnI+Cm5vdCBzdXJlIHdoYXQgdG8gc2F5LCBidXQgSSBhbHdheXMgdGhvdWdodCB0aGF0IGZp cnN0LW9yZGVyIHByZWRpY2F0ZTxicj4KbG9naWMgd2FzIHRoZSBmb3VuZGF0aW9uIG9mIGRlY2xh cmF0aXZlIGxhbmd1YWdlcyBsaWtlIHByb2xvZy48YnI+Cjxicj4KQW55aG93LCB0aGUgc3RhdGUg b2YgdGhlIHByb2dyYW0gYXQgVSBvZiBSICh3aGljaCBJJiMzOTttIHRvbGQgaXMgcHJldHR5PGJy PgphZHZhbmNlZCkgaXMgaW52ZXN0aWdhdGluZyBoeWJyaWQgbW9kZWxzIG9mIHZhcmlvdXMgZHlu YW1pYzxicj4KcHJvZ3JhbW1pbmcgYWxnb3JpdGhtcyB0byByYWlzZSBCTEVVIHNjb3Jlcy0tIGV2 ZXJ5b25lJiMzOTtzIGludmVzdGVkIGluPGJyPgp0aGUgc3RhdGlzdGljYWwgKGkuZS4gTk9UIGlu dGVybGluZ3VhbCkgYXBwcm9hY2gsIGFuZCB0cnlpbmcgdG8gZmlndXJlPGJyPgpvdXQgaG93IHRv IG1heGltaXplIHBlcmZvcm1hbmNlLiBJIHRoaW5rIHRoYXQgdGhlcmUgd291bGQgYmUgcmVhbDxi cj4KYWR2YW50YWdlcyB0byB1c2luZyBsb2piYW4gYXMgYW4gaW50ZXJsaW5ndWFsIG1lZGl1bSwg aW5zdGVhZCBvZjxicj4KZXNzZW50aWFsbHkgdHJ5aW5nIHRvIGltaXRhdGUgaHVtYW5zIHRocm91 Z2ggbWFjaGluZSBsZWFybmluZywgYnV0PGJyPgp3aGVuIHlvdSBoYXZlIGh1Z2UgY29ycG9yYSBv ZiBiaWxpbmd1YWwgKG9yIGJldHRlcikgbmF0dXJhbCBsYW5ndWFnZTxicj4KZGF0YSBhbmQgdmly dHVhbGx5IG5vIGJpbGluZ3VhbCBjb3Jwb3JhIHdpdGggbG9qYmFuLCBpdCYjMzk7cyBqdXN0PGJy PgppbmZlYXNpYmxlLiBUaGVyZSB3ZXJlIGEgZmV3IGF0dGVtcHRzIHRvIHVzZSBFc3BlcmFudG8g Zm9yIHRoYXQ8YnI+CnB1cnBvc2UgYSB3aGlsZSBiYWNrIChldmVuIGJlZm9yZSB0aGlzIHBhcGVy KSwgYW5kIG5vIG9uZSBzZWVtcyB0bzxicj4KY2l0ZSB0aGVtLCBleGNlcHQgYXMgZmFpbHVyZXMu PGJyPgo8YnI+CkhlcmUmIzM5O3MgYSByZWFsbHkgZ29vZCB1cC10by1kYXRlIGludHJvIHRvIE1U Ojxicj4KPGEgaHJlZj0iaHR0cDovL2RvY3MuZ29vZ2xlLmNvbS9Eb2M/ZG9jaWQ9MEFZWktJZU5u VEJlMlpHZDRhelJyWm0xZk5USTJabnBuWW1ScloyZyIgdGFyZ2V0PSJfYmxhbmsiPmh0dHA6Ly9k b2NzLmdvb2dsZS5jb20vRG9jP2RvY2lkPTBBWVpLSWVOblRCZTJaR2Q0YXpSclptMWZOVEkyWm5w blltUnJaMmc8L2E+PGJyPgo8YnI+CkFuZCBhIHBvd2VycG9pbnQgdmVyc2lvbiB3aXRoIGxvdHMg b2YgZGlhZ3JhbXM6PGJyPgo8YSBocmVmPSJodHRwOi8vcGVvcGxlLmNzYWlsLm1pdC5lZHUvcGVv cGxlL2tvZWhuL3B1YmxpY2F0aW9ucy90dXRvcmlhbDIwMDMucGRmIiB0YXJnZXQ9Il9ibGFuayI+ aHR0cDovL3Blb3BsZS5jc2FpbC5taXQuZWR1L3Blb3BsZS9rb2Vobi9wdWJsaWNhdGlvbnMvdHV0 b3JpYWwyMDAzLnBkZjwvYT48YnI+Cjxicj4KSGVyZSYjMzk7cyB0aGUgb3JpZ2luIG9mIHRob3Nl IHR3byBkb2N1bWVudHMsIGlmIHlvdSYjMzk7cmUgaW50ZXJlc3RlZCBpbiBtb3JlOjxicj4KPGEg aHJlZj0iaHR0cDovL3d3dy5zdGF0bXQub3JnLyIgdGFyZ2V0PSJfYmxhbmsiPmh0dHA6Ly93d3cu c3RhdG10Lm9yZy88L2E+PGJyPjxicj4KbXUmIzM5O28gbWkmIzM5O2UgLmt1JiMzOTt1cy48YnI+ PGJyPjxkaXYgY2xhc3M9ImdtYWlsX3F1b3RlIj5PbiBUdWUsIERlYyAyMiwgMjAwOSBhdCAwMDox MiwgGyRCR3I+PhsoQiBPcmVuIDxzcGFuIGRpcj0ibHRyIj4mbHQ7PGEgaHJlZj0ibWFpbHRvOmJh aXNvbmdAZ3ZiY2hpbmEub3JnLmNuIj5iYWlzb25nQGd2YmNoaW5hLm9yZy5jbjwvYT4mZ3Q7PC9z cGFuPiB3cm90ZTo8YnI+PGJsb2NrcXVvdGUgY2xhc3M9ImdtYWlsX3F1b3RlIiBzdHlsZT0iYm9y ZGVyLWxlZnQ6IDFweCBzb2xpZCByZ2IoMjA0LCAyMDQsIDIwNCk7IG1hcmdpbjogMHB0IDBwdCAw cHQgMC44ZXg7IHBhZGRpbmctbGVmdDogMWV4OyI+CgpXb3csIHNvcnJ5IGZvciB0aG9zZSB0eXBv cyEgKHR5cG9lcz8pPGJyPgo8YnI+CkhlcmUmIzM5O3MgdGhlIG9yaWdpbiBvZiB0aG9zZSB0d28g ZG9jdW1lbnRzLCBpZiB5b3UmIzM5O3JlIGludGVyZXN0ZWQgaW4gbW9yZTo8YnI+CjxhIGhyZWY9 Imh0dHA6Ly93d3cuc3RhdG10Lm9yZy8iIHRhcmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LnN0YXRt dC5vcmcvPC9hPjxicj4KPGRpdj48ZGl2PjwvZGl2PjxkaXYgY2xhc3M9Img1Ij48YnI+Cjxicj4K PGJyPgpPbiAyMDA5LTEyLTIxLCAbJEJHcj4+GyhCIE9yZW4gJmx0OzxhIGhyZWY9Im1haWx0bzpi YWlzb25nQGd2YmNoaW5hLm9yZy5jbiI+YmFpc29uZ0BndmJjaGluYS5vcmcuY248L2E+Jmd0OyB3 cm90ZTo8YnI+CiZndDsgSSBoYWQgYSBicmllZiByZXNlYXJjaCBwb3NpdGlvbiBhdCB1bml2ZXJz aXR5IG9mIFJvY2hlc3RlciAoTlkgc3RhdGUpPGJyPgomZ3Q7IHVuZGVyIERhbiBHaWxkZWEsIHdo ZXJlIHRoZXkgaGF2ZSBhIGNsb3NlLWtuaXQgQUksIGNvbXB1dGF0aW9uYWw8YnI+CiZndDsgbGlu Z3Vpc3RpY3MgYW5kIG5ldXJvbG9naWNhbCBwcm9ncmFtcy4gSSB3b3JrZWQgb24gYSBDWUsgZGVj b2RlciBmb3I8YnI+CiZndDsgQ2hpbmVzZSBFbmdsaXNoIG1hY2hpbmUgdHJhbnNsYXRpb24sIGFu ZCB0aGUgZmlyc3Qgc2V2ZXJhbCB3ZWVrcyBvZiBteTxicj4KJmd0OyByZXNlYXJjaCB3ZXJlIGJh c2ljYWxseSBjb21pbmcgdG8gdGVybXMgd2l0aCB0aGUgaGlzdG9yeSBNYWNoaW5lPGJyPgomZ3Q7 IHRyYW5zbGF0aW9uIG91dGxpbmVkIGluIHRoYXQgcGFwZXI7IHRoZSByaXNlIG9mIGNvbXB1dGF0 aW9uYWw8YnI+CiZndDsgbGluZ3Vpc3RpY3MgaW4gdGhlIDUwcyBhbmQgNjBzIGFuZCB0aGVuIHRo ZSBhZGFwdGF0aW9uIHRvIHN0YXRpc3RpY2FsPGJyPgomZ3Q7IG1vZGVscyBpbiB0aGUgODBzIGFu ZCA5MHMuPGJyPgomZ3Q7PGJyPgomZ3Q7IEFzIGZvciB3aGVyZSAmIzM5O2dldHRpbmcgY29tcHV0 ZXJzIHVuZGVyc3RhbmRpbmcgcHJlZGljYXRlIGxvZ2ljJiMzOTsgaXMsIEkmIzM5O208YnI+CiZn dDsgbm90IHN1cmUgd2hhdCB0byBzYXksIGJ1dCBJIGFsd2F5cyB0aG91Z2h0IHRoYXQgZmlyc3Qt b3JkZXIgcHJlZGljYXRlPGJyPgomZ3Q7IGxvZ2ljIHdhcyB0aGUgZm91bmRhdGlvbiBvZiBkZWNs YXJhdGl2ZSBsYW5ndWFnZXMgbGlrZSBwcm9sb2cuPGJyPgomZ3Q7PGJyPgomZ3Q7IEFueWhvdywg dGhlIHN0YXRlIG9mIHRoZSBwcm9ncmFtIGF0IFUgb2YgUiAod2hpY2ggSSYjMzk7bSB0b2xkIGlz IHByZXR0eTxicj4KJmd0OyBhZHZhbmNlZCkgaXMgaW52ZXN0aWdhdGluZyBoeWJyaWQgbW9kZWxz IG9mIHZhcmlvdXMgZHluYW1pYzxicj4KJmd0OyBwcm9ncmFtbWluZyBhbGdvcml0aG1zIHRvIHJh aXNlIEJMRVUgc2NvcmVzLS0gZXZlcnlvbmUmIzM5O3MgaW52ZXN0ZWQgaW48YnI+CiZndDsgdGhl IHN0YXRpc3RpY2FsIChpLmUuIE5PVCBpbnRlcmxpbmd1YWwpIGFwcHJvYWNoLCBhbmQgdHJ5aW5n IHRvIGZpZ3VyZTxicj4KJmd0OyBvdXQgaG93IHRvIG1heGltaXplIHBlcmZvcm1hbmNlLiBJIHRo aW5rIHRoYXQgdGhlcmUgd291bGQgYmUgcmVhbDxicj4KJmd0OyBhZHZhbnRhZ2VzIHRvIHVzaW5n IGxvamJhbiBhcyBhbiBpbnRlcmxpbmd1YWwgbWVkaXVtLCBpbnN0ZWFkIG9mPGJyPgomZ3Q7IGVz c2VudGlhbGx5IHRyeWluZyB0byBpbWl0YXRlIGh1bWFucyB0aHJvdWdoIG1hY2hpbmUgbGVhcm5p bmcsIGJ1dDxicj4KJmd0OyB3aGVuIHlvdSBoYXZlIGh1Z2UgY29ycG9yYSBvZiBiaWxpbmd1YWwg KG9yIGJldHRlcikgbmF0dXJhbCBsYW5ndWFnZTxicj4KJmd0OyBkYXRhIGFuZCB2aXJ0dWFsbHkg bm8gYmlsaW5ndWFsIGNvcnBvcmEgd2l0aCBsb2piYW4sIGl0JiMzOTtzIGp1c3Q8YnI+CiZndDsg aW5mZWFzaWJsZS4gVGhlcmUgd2VyZSBhIGZldyBhdHRlbXB0cyB0byB1c2UgRXNwZXJhbnRvIGZv ciB0aGF0PGJyPgomZ3Q7IHB1cnBvc2UgYSB3aGlsZSBiYWNrIChldmVuIGJlZm9yZSB0aGlzIHBh cGVyKSwgYW5kIG5vIG9uZSBzZWVtcyB0bzxicj4KJmd0OyBjaXRlIHRoZW0sIGV4Y2VwdCBhcyBm YWlsdXJlcy48YnI+CiZndDs8YnI+CiZndDsgSGVyZSYjMzk7cyBhIHJlYWxseSBnb29kIHVwLXRv LWRhdGUgaW50cm8gdG8gTVQ6PGJyPgomZ3Q7IDxhIGhyZWY9Imh0dHA6Ly9kb2NzLmdvb2dsZS5j b20vRG9jP2RvY2lkPTBBWVpLSWVOblRCZTJaR2Q0YXpSclptMWZOVEkyWm5wblltUnJaMmciIHRh cmdldD0iX2JsYW5rIj5odHRwOi8vZG9jcy5nb29nbGUuY29tL0RvYz9kb2NpZD0wQVlaS0llTm5U QmUyWkdkNGF6UnJabTFmTlRJMlpucG5ZbVJyWjJnPC9hPjxicj4KJmd0Ozxicj4KJmd0OyBBbmQg YSBwb3dlcnBvaW50IHZlcnNpb24gd2l0aCBsb3RzIG9mIGRpYWdyYW1zOjxicj4KJmd0OyA8YSBo cmVmPSJodHRwOi8vcGVvcGxlLmNzYWlsLm1pdC5lZHUvcGVvcGxlL2tvZWhuL3B1YmxpY2F0aW9u cy90dXRvcmlhbDIwMDMucGRmIiB0YXJnZXQ9Il9ibGFuayI+aHR0cDovL3Blb3BsZS5jc2FpbC5t aXQuZWR1L3Blb3BsZS9rb2Vobi9wdWJsaWNhdGlvbnMvdHV0b3JpYWwyMDAzLnBkZjwvYT48YnI+ CiZndDs8YnI+CiZndDsgbXUmIzM5O28gbWkmIzM5O2UgLmt1JiMzOTt1cy48YnI+CiZndDs8YnI+ CiZndDs8YnI+CiZndDsgT24gMjAwOS0xMi0yMSwgSm9uICZxdW90O1RvcCBIYXQmcXVvdDsgSm9u ZXMgJmx0OzxhIGhyZWY9Im1haWx0bzpleWVvbnVzQGdtYWlsLmNvbSI+ZXllb251c0BnbWFpbC5j b208L2E+Jmd0OyB3cm90ZTo8YnI+CiZndDsmZ3Q7IEkgcmVjZW50bHkgY2FtZSBhY3Jvc3M8YnI+ CiZndDsmZ3Q7IHRoaXMmbHQ7PGEgaHJlZj0iaHR0cDovL3d3dy5sb2piYW4ub3JnL2ZpbGVzL3do eS1sb2piYW4vbWFjdHJhbnMudHh0IiB0YXJnZXQ9Il9ibGFuayI+aHR0cDovL3d3dy5sb2piYW4u b3JnL2ZpbGVzL3doeS1sb2piYW4vbWFjdHJhbnMudHh0PC9hPiZndDtwYXBlciwgd2hpY2g8YnI+ CiZndDsmZ3Q7IGRpc2N1c3NlcyB2YXJpb3VzIG1ldGhvZHMgb2YgbWFjaGluZSB0cmFuc2xhdGlv biBtZXRob2RzLiBJbiBpdDxicj4KJmd0OyZndDsgaXQgaXMgbWVudGlvbmVkIHRoYXQgY29tcHV0 ZXJzIGFyZSBub3QgYWJsZSB0byB1bmRlcnN0YW5kIGZpcnN0LW9yZGVyPGJyPgomZ3Q7Jmd0OyAo aS5lLjxicj4KJmd0OyZndDsgcHJlZGljYXRlKSBsb2dpYy4gU2luY2UgdGhlIHBhcGVyIGlzIG5l YXJseSAyIGRlY2FkZXMgb2xkLCBJIHdhczxicj4KJmd0OyZndDsgd29uZGVyaW5nPGJyPgomZ3Q7 Jmd0OyBpZiBhbnlvbmUgaGVyZSBrbm93cyB3aGF0IHByb2dyZXNzIHRoZXJlIGhhcyBiZWVuIGlu IG1ha2luZyBpdDxicj4KJmd0OyZndDsgdW5kZXJzdGFuZGFibGUgYnkgY29tcHV0ZXJzLjxicj4K Jmd0OyZndDs8YnI+CiZndDsmZ3Q7PGJyPgomZ3Q7Jmd0OyAtLTxicj4KJmd0OyZndDsgbXUmIzM5 O28gbWkmIzM5O2UgLmFpb255cy48YnI+CiZndDsmZ3Q7PGJyPgomZ3Q7Jmd0OyAuaS5hJiMzOTtv LmUmIzM5O2Uga28ga2xhbWEgbGUgYmVuZGUgcGUgZGVucGEgYnU8YnI+CiZndDsmZ3Q7PGJyPgom Z3Q7PGJyPgo8L2Rpdj48L2Rpdj48L2Jsb2NrcXVvdGU+PC9kaXY+PGJyPjwvZGl2Pgo= --001636e1f8441c5361047b3f8307--