[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[bpfk] dag-cll git updates for Sat Feb 5 17:21:07 EST 2011
commit 5e3d8fbe1b06ad5d9edbfa801442e4d626f022e7
Author: Robin Lee Powell <rlpowell@digitalkingdom.org>
Date: Sat Feb 5 13:52:15 2011 -0800
All changes to the *.xml files automated, except the
grammar-structure breakups.
support for many more tags.
diff --git a/todocbook/10.xml b/todocbook/10.xml
index 4f6d317..219b492 100644
--- a/todocbook/10.xml
+++ b/todocbook/10.xml
@@ -2252,29 +2252,29 @@
</example>
<para> <indexterm type="general-imported"><primary>tense connection of bridi-tails</primary><secondary>meaning of</secondary></indexterm> <indexterm type="general-imported"><primary>tense connection of sumti</primary><secondary>meaning of</secondary></indexterm> In both
<xref linkend="example-random-id-o3Yg"/> and
<xref linkend="example-random-id-vSCv"/>, the underlying sentences
<oldjbophrase>mi klama le zarci</oldjbophrase> and
<oldjbophrase>mi klama le zdani</oldjbophrase> are not claimed; only the relationship in time between them is claimed.</para>
<para> <indexterm type="general-imported"><primary>tense afterthought connection forms</primary><secondary>selma'o allowed</secondary></indexterm> <indexterm type="general-imported"><primary>tense forethought connection forms</primary><secondary>selma'o allowed</secondary></indexterm> <indexterm type="general-imported"><primary>tense connection</primary><secondary>expansions of</secondary></indexterm> <indexterm type="general-imported"><primary>tense connection</primary><secondary>equivalent meanings</secondary></indexterm> Both the forethought and the afterthought forms are appropriate with PU, ZI, FAhA, VA, and ZAhO tenses. In all cases, the equivalent forms are (where X and Y stand for sentences, and TENSE for a tense cmavo):</para>
<variablelist>
<varlistentry>
<term>subordinate:</term>
- <listitem><compound-syntax>X TENSE le nu Y</compound-syntax></listitem>
+ <listitem><grammar-template>X TENSE le nu Y</grammar-template></listitem>
</varlistentry>
<varlistentry>
<term>afterthought coordinate:</term>
- <listitem><compound-syntax>Y .i+TENSE+bo X</compound-syntax></listitem>
+ <listitem><grammar-template>Y .i+TENSE+bo X</grammar-template></listitem>
</varlistentry>
<varlistentry>
<term>forethought coordinate:</term>
- <listitem><compound-syntax>TENSE+gi X gi Y</compound-syntax></listitem>
+ <listitem><grammar-template>TENSE+gi X gi Y</grammar-template></listitem>
</varlistentry>
</variablelist>
</section>
<section xml:id="section-tense-logical-connection">
<title>Tensed logical connectives</title>
<para> <indexterm type="general-imported"><primary>tensed logical connectives</primary></indexterm> <indexterm type="general-imported"><primary>logical connectives</primary><secondary>tensed</secondary></indexterm> The Lojban tense system interacts with the Lojban logical connective system. That system is a separate topic, explained in
<xref linkend="chapter-connectives"/> and touched on only in summary here. By the rules of the logical connective system,
<xref linkend="example-random-id-qehB"/> through 17.3 are equivalent in meaning:</para>
<example xml:id="example-random-id-qehB" role="interlinear-gloss-example">
@@ -3151,31 +3151,43 @@
<title>
<anchor xml:id="c10e23d8"/>
</title>
<interlinear-gloss>
<jbo>bagi do nelci mi gi mi nelci do</jbo>
<en>After you like me, I like you.</en>
</interlinear-gloss>
</example>
<para>respectively.</para>
<para> <indexterm type="general-imported"><primary>modal sentence connection</primary><secondary>table of equivalent schemata</secondary></indexterm> The following modal sentence schemata (where X and Y represent sentences) all have the same meaning:</para>
- <compound-syntax>
- X .i BAI bo Y
- BAI gi Y gi X
- X BAI le nu Y
- </compound-syntax>
+ <simplelist>
+ <member><grammar-template>
+ X .i BAI bo Y
+ </grammar-template></member>
+ <member><grammar-template>
+ BAI gi Y gi X
+ </grammar-template></member>
+ <member><grammar-template>
+ X BAI le nu Y
+ </grammar-template></member>
+ </simplelist>
<para> <indexterm type="general-imported"><primary>tense sentence connection</primary><secondary>table of equivalent schemata</secondary></indexterm> whereas the following tensed sentence schemata also have the same meaning:</para>
- <compound-syntax>
- X .i TENSE bo Y
- TENSE gi X gi Y
- Y TENSE le nu X
- </compound-syntax>
+ <simplelist>
+ <member><grammar-template>
+ X .i TENSE bo Y
+ </grammar-template></member>
+ <member><grammar-template>
+ TENSE gi X gi Y
+ </grammar-template></member>
+ <member><grammar-template>
+ Y TENSE le nu X
+ </grammar-template></member>
+ </simplelist>
<para>neglecting the question of what is claimed. In the modal sentence schemata, the modal tag is always followed by Y, the sentence representing the event in the x1 place of the gismu that underlies the BAI. In the tensed sentences, no such simple rule exists.</para>
</section>
<section xml:id="section-tense-questions">
<title>Tense questions:
<valsi>cu'e</valsi></title>
<para>The following cmavo is discussed in this section:</para>
<cmavo-list>
<cmavo-entry>
<cmavo>cu'e</cmavo>
<selmaho>CUhE</selmaho>
diff --git a/todocbook/11.xml b/todocbook/11.xml
index 956096d..9c10468 100644
--- a/todocbook/11.xml
+++ b/todocbook/11.xml
@@ -686,21 +686,21 @@
<oldjbophrase>le ni</oldjbophrase> is a number; however, it cannot be treated grammatically as a quantifier in Lojban unless prefixed by the mathematical cmavo
<valsi>mo'e</valsi>:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-SaTi">
<title>
<anchor xml:id="c11e5d3"/>
</title>
<interlinear-gloss>
<jbo>li pa vu'u mo'e le ni le pixra cu blanu [kei]</jbo>
<gloss>the-number 1 minus the-operand the amount-of (the picture being-blue)</gloss>
- <en><inlineequation><mathphrase>1 - B</mathphrase></inlineequation>, where <varname>B</varname> = blueness of the picture</en>
+ <en><inlinemath>1 - B</inlinemath>, where <varname>B</varname> = blueness of the picture</en>
</interlinear-gloss>
</example>
<para>Mathematical Lojban is beyond the scope of this chapter, and is explained more fully in
<xref linkend="chapter-mekso"/>.</para>
<para>There are contexts where either property or amount abstractions make sense, and in such constructions, amount abstractions can make use of
<valsi>ce'u</valsi> just like property abstractors. Thus,</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-1LtX">
<title>
<anchor xml:id="c11e5d4"/>
</title>
diff --git a/todocbook/14.xml b/todocbook/14.xml
index ecac656..3e1e992 100644
--- a/todocbook/14.xml
+++ b/todocbook/14.xml
@@ -478,23 +478,23 @@
<jbo>la djan. nanmu .iseju la djeimyz. ninmu</jbo>
<en>Whether or not John is a man, James is a woman.</en>
</interlinear-gloss>
</example>
<para> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>na</primary></indexterm> <indexterm type="general-imported"><primary>na</primary><secondary>order in logical connectives with se</secondary></indexterm> <indexterm type="general-imported"><primary>se</primary><secondary>order in logical connectives with na</secondary></indexterm> If both
<valsi>na</valsi> and
<valsi>se</valsi> are present, which is legal but never necessary,
<valsi>na</valsi> would come before
<valsi>se</valsi>.</para>
<para> <indexterm type="lojban-word-imported"><primary>JA selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>I selma'o</primary></indexterm> <indexterm type="general-imported"><primary>ijeks</primary><secondary>syntax of</secondary></indexterm> The full syntax of ijeks, therefore, is:</para>
- <compound-syntax>
+ <grammar-template>
.i [na] [se] JA [nai]
- </compound-syntax>
+ </grammar-template>
<para>where the cmavo in brackets are optional.</para>
</section>
<section xml:id="section-forethought-bridi-connection">
<title>Forethought bridi connection</title>
<para> <indexterm type="general-imported"><primary>forethought connectives</primary><secondary>contrasted with afterthought connectives</secondary></indexterm> <indexterm type="general-imported"><primary>afterthought connectives</primary><secondary>contrasted with forethought connectives</secondary></indexterm> Many concepts in Lojban are expressible in two different ways, generally referred to as
<quote>afterthought</quote> and
<quote>forethought</quote>.
<xref linkend="section-bridi-connection"/> discussed what is called
@@ -655,30 +655,30 @@
<example xml:id="example-random-id-qgMy" role="interlinear-gloss-example">
<title>
<anchor xml:id="c14e5d11"/>
</title>
<interlinear-gloss>
<jbo>ganai la djan. nanmu ginai la djeimyz. ninmu</jbo>
<gloss>John is-not-a-man or James is-not-a-woman.</gloss>
</interlinear-gloss>
</example>
<para> <indexterm type="lojban-word-imported"><primary>GA selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="lojban-word-imported"><primary>GA selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>ganai</primary></indexterm> <indexterm type="general-imported"><primary>geks</primary><secondary>syntax of</secondary></indexterm> The syntax of geks is:</para>
- <compound-syntax>
+ <grammar-template>
[se] GA [nai]
- </compound-syntax>
+ </grammar-template>
<para> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>GI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>gi</primary></indexterm> <indexterm type="general-imported"><primary>giks</primary><secondary>syntax of</secondary></indexterm> and of giks (which are not themselves connectives, but part of the machinery of forethought connection) is:</para>
- <compound-syntax>
+ <grammar-template>
<valsi>gi</valsi> [nai]
- </compound-syntax>
+ </grammar-template>
</section>
<section xml:id="section-sumti-connection">
<title>sumti connection</title>
<para> <indexterm type="general-imported"><primary>bridi logical connection</primary><secondary>compared with sumti logical connections</secondary></indexterm> <indexterm type="general-imported"><primary>sumti logical connection</primary><secondary>compared with bridi logical connections</secondary></indexterm> <indexterm type="general-imported"><primary>sumti logical connection</primary><secondary>rationale for</secondary></indexterm> <indexterm type="general-imported"><primary>sumti logical connection</primary></indexterm> Geks and ijeks are sufficient to state every possible logical connection between two bridi. However, it is often the case that two bridi to be logically connected have one or more portions in common:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-Ecnq">
<title>
<anchor xml:id="c14e6d1"/>
</title>
<interlinear-gloss>
@@ -1173,23 +1173,23 @@
<title>
<anchor xml:id="c14e9d11"/>
</title>
<interlinear-gloss>
<jbo>da klama la nu,IORK. la finyks. gi'e klama la nu,IORK. la rom.</jbo>
<gloss>Something is-a-goer to-New York from-Phoenix and is-a-goer to-New York from-Rome.</gloss>
</interlinear-gloss>
</example>
<para> <indexterm type="lojban-word-imported"><primary>GIhA selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="lojban-word-imported"><primary>na</primary></indexterm> <indexterm type="general-imported"><primary>giheks</primary><secondary>syntax of</secondary></indexterm> The syntax of giheks is:</para>
- <compound-syntax>
+ <grammar-template>
[na] [se] GIhA [nai]
- </compound-syntax>
+ </grammar-template>
<para>which is exactly parallel to the syntax of eks.</para>
</section>
<section xml:id="section-multiple-compound-bridi">
<title>Multiple compound bridi</title>
<para> <indexterm type="general-imported"><primary>compound bridi</primary><secondary>multiple with bo</secondary></indexterm> Giheks can be combined with
<valsi>bo</valsi> in the same way as eks:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-DpCN">
<title>
<anchor xml:id="c14e10d1"/>
@@ -1553,32 +1553,32 @@
</title>
<interlinear-gloss>
<jbo>la .teris. cu [ke] ricfu ja pindi [ke'e] je ke nakni ja fetsi [ke'e]</jbo>
<en>Terry is (rich or poor) and (male or female).</en>
</interlinear-gloss>
</example>
<para>where the first
<oldjbophrase>ke ... ke'e</oldjbophrase> pair may be omitted altogether by the rule of left-grouping, but is optionally permitted. In any case, the last instance of
<valsi>ke'e</valsi> may be elided.</para>
<para> <indexterm type="lojban-word-imported"><primary>JA selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="lojban-word-imported"><primary>na</primary></indexterm> <indexterm type="general-imported"><primary>jeks</primary><secondary>syntax of</secondary></indexterm> The syntax of jeks is:</para>
- <compound-syntax>
+ <grammar-template>
[na] [se] JA [nai]
- </compound-syntax>
+ </grammar-template>
<para>parallel to eks and giheks.</para>
<para> <indexterm type="lojban-word-imported"><primary>GUhA selma'o</primary></indexterm> <indexterm type="general-imported"><primary>guhek</primary><secondary>definition</secondary></indexterm> <indexterm type="general-imported"><primary>forethought tanru connection</primary></indexterm> Forethought tanru connection does not use geks, but uses guheks instead. Guheks have exactly the same form as geks:</para>
<para> <indexterm type="lojban-word-imported"><primary>GUhA selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="general-imported"><primary>guheks</primary><secondary>syntax of</secondary></indexterm> FIXME: TAG SPOT</para>
- <compound-syntax>
+ <grammar-template>
[se] GUhA [nai]
- </compound-syntax>
+ </grammar-template>
<para> <indexterm type="general-imported"><primary>logical connection</primary><secondary>of tanru as opposed to bridi-tail</secondary></indexterm> <indexterm type="general-imported"><primary>logical connection</primary><secondary>of bridi-tail as opposed to tanru</secondary></indexterm> <indexterm type="general-imported"><primary>guheks for tanru connection</primary><secondary>rationale</secondary></indexterm> Using guheks in tanru connection (rather than geks) resolves what would otherwise be an unacceptable ambiguity between bridi-tail and tanru connection:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-mjog">
<title>
<anchor xml:id="c14e12d10"/>
</title>
<interlinear-gloss>
<jbo>la .alis. gu'e ricfu gi fetsi</jbo>
<en>Alice is both rich and female.</en>
@@ -2549,39 +2549,39 @@
<interlinear-gloss>
<jbo>do dicra .e'a mi ca la daucac. bi'onai la gaicac.</jbo>
<gloss>You disturb (allowed) me at 10 not-from ... to 12</gloss>
<en>You can contact me except from 10 to 12.</en>
</interlinear-gloss>
</example>
<para>The complete syntax of joiks is:</para>
<para> <indexterm type="lojban-word-imported"><primary>GAhO selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>BIhI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>JOI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="general-imported"><primary>joiks</primary><secondary>syntax of</secondary></indexterm> FIXME: TAG SPOT</para>
- <compound-syntax>
+ <grammar-template>
[se] JOI [nai] [se] BIhI [nai] GAhO [se] BIhI [nai] GAhO
- </compound-syntax>
+ </grammar-template>
<para> <indexterm type="lojban-word-imported"><primary>JOI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>GI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>gi</primary></indexterm> <indexterm type="general-imported"><primary>joigik</primary><secondary>definition</secondary></indexterm> <indexterm type="general-imported"><primary>intervals</primary><secondary>forethought</secondary></indexterm> Notice that the colloquial English translations of
<valsi>bi'i</valsi> and
<valsi>bi'o</valsi> have forethought form:
<quote>between ... and</quote> for
<valsi>bi'i</valsi>, and
<quote>from ... to</quote> for
<valsi>bi'o</valsi>. In Lojban too, non-logical connectives can be expressed in forethought. Rather than using a separate selma'o, the forethought logical connectives are constructed from the afterthought ones by suffixing
<valsi>gi</valsi>. Such a compound cmavo is not unnaturally called a
<oldjbophrase>joigik</oldjbophrase>; the syntax of joigiks is any of:</para>
<para> <indexterm type="lojban-word-imported"><primary>GAhO selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>JOI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>BIhI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>GI selma'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>nai</primary></indexterm> <indexterm type="lojban-word-imported"><primary>se</primary></indexterm> <indexterm type="general-imported"><primary>joigiks</primary><secondary>syntax of</secondary></indexterm> FIXME: TAG SPOT</para>
- <compound-syntax>
+ <grammar-template>
[se] JOI [nai] GI [se] BIhI [nai] GI GAhO [se] BIhI [nai] GAhO GI
- </compound-syntax>
+ </grammar-template>
<para> <indexterm type="general-imported"><primary>joigiks</primary><secondary>connection types</secondary></indexterm> Joigiks may be used to non-logically connect bridi, sumti, and bridi-tails; and also in termsets.</para>
<para>
<xref linkend="example-random-id-pC5x"/> in forethought becomes:</para>
<para> <indexterm type="example-imported"><primary>carry the piano</primary><secondary>example</secondary></indexterm> FIXME: TAG SPOT</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-iBpP">
<title>
<anchor xml:id="c14e16d10"/>
</title>
<interlinear-gloss>
<jbo>joigi la djan. gi la .alis. bevri le pipno</jbo>
@@ -2655,33 +2655,33 @@
<valsi>ve'o</valsi> parentheses when used as a quantifier. The right parenthesis mark,
<valsi>ve'o</valsi>, is an elidable terminator.</para>
<para>Simple examples of logical connection between operators are hard to come by. A contrived example is:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-dCxf">
<title>
<anchor xml:id="c14e17d3"/>
</title>
<interlinear-gloss>
<jbo>li re su'i je pi'i re du li vo</jbo>
<gloss>The-number 2 plus and times 2 equals the-number 4.</gloss>
- <en><inlineequation><mathphrase>2 + 2 = 4</mathphrase></inlineequation> and <inlineequation><mathphrase>2 x 2 = 4</mathphrase></inlineequation>.</en>
+ <en><inlinemath>2 + 2 = 4</inlinemath> and <inlinemath>2 x 2 = 4</inlinemath>.</en>
</interlinear-gloss>
</example>
<para>The forethought form of
<xref linkend="example-random-id-dCxf"/> is:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-YBD6">
<title>
<anchor xml:id="c14e17d4"/>
</title>
<interlinear-gloss>
<jbo>li re ge su'i gi pi'i re du li vo</jbo>
<gloss>The-number two both plus and times two equals the-number four.</gloss>
- <en>Both <inlineequation><mathphrase>2 + 2 = 4</mathphrase></inlineequation> and <inlineequation><mathphrase>2 x 2 = 4</mathphrase></inlineequation>.</en>
+ <en>Both <inlinemath>2 + 2 = 4</inlinemath> and <inlinemath>2 x 2 = 4</inlinemath>.</en>
</interlinear-gloss>
</example>
<para> <indexterm type="lojban-word-imported"><primary>ke'i</primary></indexterm> <indexterm type="lojban-word-imported"><primary>ga'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>bi'i</primary></indexterm> <indexterm type="general-imported"><primary>mathematical intervals</primary></indexterm> Non-logical connection with joiks or joigiks is also permitted between operands and between operators. One use for this construct is to connect operands with
<valsi>bi'i</valsi> to create mathematical intervals:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-z2oF">
<title>
<anchor xml:id="c14e17d5"/>
</title>
diff --git a/todocbook/17.xml b/todocbook/17.xml
index 42feba9..bb7d4ec 100644
--- a/todocbook/17.xml
+++ b/todocbook/17.xml
@@ -1049,21 +1049,21 @@ ty. .ubu vy. xy. .ybu zy.
</example>
<para> <indexterm type="lojban-word-imported"><primary>vei</primary></indexterm> <indexterm type="example-imported"><primary>n people</primary><secondary>example</secondary></indexterm> <indexterm type="general-imported"><primary>lerfu strings</primary><secondary>as quantifiers</secondary><tertiary>avoiding interaction with sumti quantified</tertiary></indexterm> The parentheses are required because
<oldjbophrase>ny. lo prenu</oldjbophrase> would be two separate sumti,
<oldjbophrase>ny.</oldjbophrase> and
<oldjbophrase>lo prenu</oldjbophrase>. In general, any mathematical expression other than a simple number must be in parentheses when used as a quantifier; the right parenthesis mark, the cmavo
<valsi>ve'o</valsi>, can usually be elided.</para>
<para> <indexterm type="general-imported"><primary>lerfu juxtaposition interpretation</primary><secondary>contrasted with mathematical interpretation</secondary></indexterm> <indexterm type="general-imported"><primary>lerfu string</primary><secondary>interpretation</secondary><tertiary>contrasted with mathematical interpretation</tertiary></indexterm> All the examples above have exhibited single lerfu words rather than lerfu strings, in accordance with the conventions of ordinary mathematics. A longer lerfu string would still be treated as a single variable or function name: in Lojban,
<oldjbophrase>.abu by. cy.</oldjbophrase> is not the multiplication
- <quote><inlineequation><mathphrase>a × b × c</mathphrase></inlineequation></quote> but is the variable
+ <quote><inlinemath>a × b × c</inlinemath></quote> but is the variable
<varname>abc</varname>. (Of course, a local convention could be employed that made the value of a variable like
<varname>abc</varname>, with a multi-lerfu-word name, equal to the values of the variables
<varname>a</varname>,
<varname>b</varname>, and
<varname>c</varname> multiplied together.)</para>
<para> <indexterm type="general-imported"><primary>lerfu shift scope</primary><secondary>exception for mathematical texts</secondary></indexterm> <indexterm type="general-imported"><primary>mathematical texts</primary><secondary>effect on lerfu shift scope</secondary></indexterm> There is a special rule about shift words in mathematical text: shifts within mathematical expressions do not affect lerfu words appearing outside mathematical expressions, and vice versa.</para>
</section>
<section xml:id="section-acronyms">
<title>Acronyms</title>
diff --git a/todocbook/18.xml b/todocbook/18.xml
index f6b967a..8cacb0c 100644
--- a/todocbook/18.xml
+++ b/todocbook/18.xml
@@ -362,71 +362,71 @@
<description>π, pi (approx 3.14159...)</description>
</cmavo-entry>
<cmavo-entry>
<cmavo>te'o</cmavo>
<selmaho>PA</selmaho>
<description>exponential e (approx 2.71828...)</description>
</cmavo-entry>
<cmavo-entry>
<cmavo>fi'u</cmavo>
<selmaho>PA</selmaho>
- <description>golden ratio, Φ, phi, <inlineequation><mathphrase>(1 + sqrt(5))/2</mathphrase></inlineequation> (approx. 1.61803...)</description>
+ <description>golden ratio, Φ, phi, <inlinemath>(1 + sqrt(5))/2</inlinemath> (approx. 1.61803...)</description>
</cmavo-entry>
</cmavo-list>
<para> <indexterm type="general-imported"><primary>fraction</primary><secondary>meaning with elided numerator and denominator</secondary></indexterm> <indexterm type="general-imported"><primary>numbers</primary><secondary>special</secondary></indexterm> The last cmavo is the same as the fraction sign cmavo: a fraction sign with neither numerator nor denominator represents the golden ratio.</para>
<para>Numbers can have any of these digit, punctuation, and special-number cmavo of Sections 2, 3, and 4 in any combination:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-k2U4">
<title>
<anchor xml:id="c18e4d1"/>
</title>
<interlinear-gloss>
<jbo>ma'u ci'i</jbo>
<math>+∞</math>
</interlinear-gloss>
</example>
<example role="interlinear-gloss-example" xml:id="example-random-id-k2VC">
<title>
<anchor xml:id="c18e4d2"/>
</title>
<interlinear-gloss>
<jbo>ci ka'o re</jbo>
- <en>3i2 (a complex number equivalent to <inlineequation><mathphrase>3 + 2i</mathphrase></inlineequation>) </en>
+ <en>3i2 (a complex number equivalent to <inlinemath>3 + 2i</inlinemath>) </en>
</interlinear-gloss>
</example>
<para> <indexterm type="lojban-word-imported"><primary>ka'o</primary></indexterm> <indexterm type="lojban-word-imported"><primary>ci'i</primary></indexterm> <indexterm type="example-imported"><primary>infinity</primary><secondary>example</secondary></indexterm> <indexterm type="general-imported"><primary>ka'o</primary><secondary>as special number compared with as numerical punctuation</secondary></indexterm> <indexterm type="general-imported"><primary>complex numbers</primary><secondary>expressing</secondary></indexterm> Note that
<valsi>ka'o</valsi> is both a special number (meaning
<quote>i</quote>) and a number punctuation mark (separating the real and the imaginary parts of a complex number).</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-k32m">
<title>
<anchor xml:id="c18e4d3"/>
<indexterm type="lojban-word-imported"><primary>ci'i</primary></indexterm>
<indexterm type="example-imported"><primary>aleph null</primary><secondary>example</secondary></indexterm>
<indexterm type="example-imported"><primary>transfinite cardinal</primary><secondary>example</secondary></indexterm>
</title>
<interlinear-gloss>
<jbo>ci'i no</jbo>
<en>infinity zero</en>
- <en><inlineequation><mathphrase>ℵ<subscript>0</subscript></mathphrase></inlineequation> (a transfinite cardinal) </en>
+ <en><inlinemath>ℵ<subscript>0</subscript></inlinemath> (a transfinite cardinal) </en>
</interlinear-gloss>
</example>
<para>The special numbers
<valsi>pai</valsi> and
<valsi>te'o</valsi> are mathematically important, which is why they are given their own cmavo:</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-k356">
<title>
<anchor xml:id="c18e4d4"/>
</title>
<interlinear-gloss>
<jbo>pai</jbo>
- <en><inlineequation><mathphrase>pi</mathphrase></inlineequation>, <inlineequation><mathphrase>π</mathphrase></inlineequation> </en>
+ <en><inlinemath>pi</inlinemath>, <inlinemath>π</inlinemath> </en>
</interlinear-gloss>
</example>
<example role="interlinear-gloss-example" xml:id="example-random-id-k36i">
<title>
<anchor xml:id="c18e4d5"/>
</title>
<interlinear-gloss>
<jbo>te'o</jbo>
<math>e </math>
</interlinear-gloss>
@@ -3301,51 +3301,51 @@
</section>
<section xml:id="section-vuhu">
<title>Complete table of VUhU cmavo, with operand structures</title>
<para>The operand structures specify what various operands (labeled a, b, c, ...) mean. The implied context is forethought, since only forethought operators can have a variable number of operands; however, the same rules apply to infix and RP uses of VUhU.</para>
<para> <indexterm type="general-imported"><primary>operators</primary><secondary>list of simple</secondary></indexterm> FIXME: TAG SPOT</para>
<!-- FIXME: use actual equations for integral, derivative, etc. -->
<cmavo-list>
<cmavo-entry>
<selmaho>su'i</selmaho>
<description>plus</description>
- <description role="math"><inlineequation><mathphrase>(((a + b) + c) + ...)</mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>(((a + b) + c) + ...)</inlinemath></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>pi'i</selmaho>
<description>times</description>
- <description role="math"><inlineequation><mathphrase>(((a × b) × c) × ...)</mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>(((a × b) × c) × ...)</inlinemath></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>vu'u</selmaho>
<description>minus</description>
- <description role="math"><inlineequation><mathphrase>(((a − b) − c) − ...)</mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>(((a − b) − c) − ...)</inlinemath></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>fe'i</selmaho>
<description>divided by</description>
- <description role="math"><inlineequation><mathphrase>(((a / b) / c) / ...)</mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>(((a / b) / c) / ...)</inlinemath></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>ju'u</selmaho>
<description>number base</description>
<description role="math">numeral string <varname>a</varname> interpreted in the base <varname>b</varname></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>pa'i</selmaho>
<description>ratio</description>
<description role="math">the ratio of <varname>a</varname> to <varname>b</varname> a:b</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>fa'i</selmaho>
<description>reciprocal of/multiplicative inverse</description>
- <description role="math"><inlineequation><mathphrase>1 / a</mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>1 / a</inlinemath></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>gei</selmaho>
<description>scientific notation</description>
<description role="math">b × (c [default 10] to the <varname>a</varname> power)</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>ge'a</selmaho>
<description>null operator</description>
<description role="math">(no operands)</description>
@@ -3362,21 +3362,21 @@
<description role="math"><varname>a</varname> to the <varname>b</varname> power</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>fe'a</selmaho>
<description>nth root of/inverse power</description>
<description role="math">b<superscript>th</superscript> root of a (default square root: b = 2)</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>cu'a</selmaho>
<description>absolute value/norm</description>
- <description role="math"><inlineequation><mathphrase>| a |</mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>| a |</inlinemath></description>
</cmavo-entry>
<cmavo-entry>
<selmaho>ne'o</selmaho>
<description>factorial</description>
<description role="math">a!</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>pi'a</selmaho>
<description>matrix row vector combiner</description>
<description role="math">(all operands are row vectors)</description>
@@ -3410,21 +3410,21 @@
<description role="math">summation of a using variable b over range c</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>va'a</selmaho>
<description>negation of/additive inverse</description>
<description role="math">-a</description>
</cmavo-entry>
<cmavo-entry>
<selmaho>re'a</selmaho>
<description>matrix transpose/dual</description>
- <description role="math"><inlineequation><mathphrase>a<superscript>*</superscript></mathphrase></inlineequation></description>
+ <description role="math"><inlinemath>a<superscript>*</superscript></inlinemath></description>
</cmavo-entry>
</cmavo-list>
</section>
<section xml:id="section-pa">
<title>Complete table of PA cmavo: digits, punctuation, and other numbers.</title>
<itemizedlist>
<listitem>
<cmavo-list>
<title><indexterm type="general-imported"><primary>digits</primary><secondary>list of decimal</secondary></indexterm> Decimal digits:</title>
<cmavo-entry>
diff --git a/todocbook/20.xml b/todocbook/20.xml
index d85b002..f108bbc 100644
--- a/todocbook/20.xml
+++ b/todocbook/20.xml
@@ -1212,21 +1212,21 @@
</bridgehead>
<para>A tense indicating dimensionality in space (line, plane, volume, or space-time interval).</para>
<programlisting xml:space="preserve">
le verba ve'a vi'a cadzu le bisli
The child [medium space interval] [2-dimensional] walks-on the ice.
In a medium-sized area, the child walks on the ice.
</programlisting>
<bridgehead>
<anchor xml:id="VUhO"/> selma'o VUhO (
- <xref linkend="chapter-vuho"/>)
+ <xref linkend="section-vuho"/>)
</bridgehead>
<para>Attaches relative clauses or phrases to a whole (possibly connected) sumti, rather than simply to the leftmost portion of the sumti.</para>
<programlisting xml:space="preserve">
la frank. ce la djordj. vu'o noi gidva cu zvati le kumfa
Frank [in-set-with] George, which are-guides, are-in the room.
Frank and George, who are guides, are in the room.
</programlisting>
<bridgehead>
<anchor xml:id="VUhU"/> selma'o VUhU (
diff --git a/todocbook/4.xml b/todocbook/4.xml
index 113db01..4b2f41e 100644
--- a/todocbook/4.xml
+++ b/todocbook/4.xml
@@ -2098,62 +2098,62 @@
</informaltable>
</para>
</listitem>
<listitem>
<para>Count the number of vowels, not including
<letteral>y</letteral>; call it
<varname>V</varname>.</para>
</listitem>
</orderedlist>
<para> <indexterm type="general-imported"><primary>lujvo form</primary><secondary>hierarchy of priorities for selection of</secondary></indexterm> <indexterm type="general-imported"><primary>hierarchy of priorities for selecting lujvo form</primary></indexterm> The score is then:
- <informalequation><mathphrase>(1000 * L) - (500 * A) + (100 * H) - (10 * R) - V</mathphrase></informalequation>
+ <math>(1000 * L) - (500 * A) + (100 * H) - (10 * R) - V</math>
<indexterm type="general-imported"><primary>lujvo</primary><secondary>scored examples of</secondary></indexterm> In case of ties, there is no preference. This should be rare. Note that the algorithm essentially encodes a hierarchy of priorities: short words are preferred (counting apostrophes as half a letter), then words with fewer hyphens, words with more pleasing rafsi (this judgment is subjective), and finally words with more vowels are chosen. Each decision principle is applied in turn if the ones before it have failed to choose; it is possible that a lower-ranked principle might dominate a higher-ranked one if it is ten times better than the alternative.</para>
<para> <!-- FIXME: there's nowhere for this indexterm to go --><indexterm type="example-imported"><primary>doghouse</primary><secondary>example</secondary></indexterm> <indexterm type="general-imported"><primary>lujvo</primary><secondary>examples of making</secondary></indexterm> Here are some lujvo with their scores (not necessarily the lowest scoring forms for these lujvo, nor even necessarily sensible lujvo):</para>
<example xml:id="example-random-id-qJKu" role="lujvo-making-example">
<title>
<anchor xml:id="c4e12d1"/>
</title>
<lujvo-making>
<jbo>zbasai</jbo>
<rafsi>zba + sai</rafsi>
- <score><inlineequation><mathphrase>(1000 * 6) - (500 * 0) + (100 * 0) - (10 * 15) - 3 = 5847</mathphrase></inlineequation></score>
+ <score><inlinemath>(1000 * 6) - (500 * 0) + (100 * 0) - (10 * 15) - 3 = 5847</inlinemath></score>
</lujvo-making>
</example>
<example xml:id="example-random-id-qjLd" role="lujvo-making-example">
<title>
<anchor xml:id="c4e12d2"/>
</title>
<lujvo-making>
<jbo>nunynau</jbo>
<rafsi>nun + y + nau</rafsi>
- <score><inlineequation><mathphrase>(1000 * 7) - (500 * 0) + (100 * 1) - (10 * 13) - 3 = 6967</mathphrase></inlineequation></score>
+ <score><inlinemath>(1000 * 7) - (500 * 0) + (100 * 1) - (10 * 13) - 3 = 6967</inlinemath></score>
</lujvo-making>
</example>
<example xml:id="example-random-id-qJLQ" role="lujvo-making-example">
<title>
<anchor xml:id="c4e12d3"/>
</title>
<lujvo-making>
<jbo>sairzbata'u</jbo>
<rafsi>sai + r + zba + ta'u</rafsi>
- <score><inlineequation><mathphrase>(1000 * 11) - (500 * 1) + (100 * 1) - (10 * 21) - 5 = 10385</mathphrase></inlineequation></score>
+ <score><inlinemath>(1000 * 11) - (500 * 1) + (100 * 1) - (10 * 21) - 5 = 10385</inlinemath></score>
</lujvo-making>
</example>
<example xml:id="example-random-id-qJmn" role="lujvo-making-example">
<title>
<anchor xml:id="c4e12d4"/>
</title>
<lujvo-making>
<jbo>zbazbasysarji</jbo>
<rafsi>zba + zbas + y + sarji</rafsi>
- <score><inlineequation><mathphrase>(1000 * 13) - (500 * 0) + (100 * 1) - (10 * 12) - 4 = 12976</mathphrase></inlineequation></score>
+ <score><inlinemath>(1000 * 13) - (500 * 0) + (100 * 1) - (10 * 12) - 4 = 12976</inlinemath></score>
</lujvo-making>
</example>
</section>
<section xml:id="section-lujvo-making-examples">
<title>lujvo-making examples</title>
<para>This section contains examples of making and scoring lujvo. First, we will start with the tanru
<oldjbophrase>gerku zdani</oldjbophrase> (
<quote>dog house</quote>) and construct a lujvo meaning
@@ -2644,88 +2644,88 @@
<varlistentry>
<term><valsi>centi</valsi></term>
<listitem><para>.01/centi</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>milti</valsi></term>
<listitem><para>.001/milli</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>mikri</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-6</superscript></mathphrase></inlineequation>/micro</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-6</superscript></inlinemath>/micro</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>nanvi</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-9</superscript></mathphrase></inlineequation>/nano</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-9</superscript></inlinemath>/nano</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>picti</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-12</superscript></mathphrase></inlineequation>/pico</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-12</superscript></inlinemath>/pico</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>femti</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-15</superscript></mathphrase></inlineequation>/femto</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-15</superscript></inlinemath>/femto</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>xatsi</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-18</superscript></mathphrase></inlineequation>/atto</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-18</superscript></inlinemath>/atto</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>zepti</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-21</superscript></mathphrase></inlineequation>/zepto</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-21</superscript></inlinemath>/zepto</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>gocti</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>-24</superscript></mathphrase></inlineequation>/yocto</para></listitem>
+ <listitem><para><inlinemath>10<superscript>-24</superscript></inlinemath>/yocto</para></listitem>
</varlistentry>
</variablelist>
<para>Large metric prefixes (values greater than 1):</para>
<variablelist>
<varlistentry>
<term><valsi>dekto</valsi></term>
<listitem><para>10/deka</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>xecto</valsi></term>
<listitem><para>100/hecto</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>kilto</valsi></term>
<listitem><para>1000/kilo</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>megdo</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>6</superscript></mathphrase></inlineequation>/mega</para></listitem>
+ <listitem><para><inlinemath>10<superscript>6</superscript></inlinemath>/mega</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>gigdo</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>9</superscript></mathphrase></inlineequation>/giga</para></listitem>
+ <listitem><para><inlinemath>10<superscript>9</superscript></inlinemath>/giga</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>terto</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>12</superscript></mathphrase></inlineequation>/tera</para></listitem>
+ <listitem><para><inlinemath>10<superscript>12</superscript></inlinemath>/tera</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>petso</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>15</superscript></mathphrase></inlineequation>/peta</para></listitem>
+ <listitem><para><inlinemath>10<superscript>15</superscript></inlinemath>/peta</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>xexso</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>18</superscript></mathphrase></inlineequation>/exa</para></listitem>
+ <listitem><para><inlinemath>10<superscript>18</superscript></inlinemath>/exa</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>zetro</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>21</superscript></mathphrase></inlineequation>/zetta</para></listitem>
+ <listitem><para><inlinemath>10<superscript>21</superscript></inlinemath>/zetta</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>gotro</valsi></term>
- <listitem><para><inlineequation><mathphrase>10<superscript>24</superscript></mathphrase></inlineequation>/yotta</para></listitem>
+ <listitem><para><inlinemath>10<superscript>24</superscript></inlinemath>/yotta</para></listitem>
</varlistentry>
</variablelist>
<para> <indexterm type="general-imported"><primary>gismu</primary><secondary>cultural</secondary></indexterm> Other scientific or mathematical terms:</para>
<variablelist>
<varlistentry>
<term><valsi>delno</valsi></term>
<listitem><para>candela</para></listitem>
</varlistentry>
<varlistentry>
<term><valsi>kelvo</valsi></term>
diff --git a/todocbook/6.xml b/todocbook/6.xml
index e8b5566..a138131 100644
--- a/todocbook/6.xml
+++ b/todocbook/6.xml
@@ -997,21 +997,21 @@
<valsi>su'o</valsi>.</para>
<para> <indexterm type="general-imported"><primary>le-series cmavo</primary><secondary>rationale for implicit inner quantifier</secondary></indexterm> <indexterm type="general-imported"><primary>lo-series cmavo</primary><secondary>rationale for implicit inner quantifier</secondary></indexterm> Why? Because lo-series descriptors always refer to all of the things which really fit into the x1 place of the selbri. They are not restricted by the speaker's intention. Descriptors of the le-series, however, are so restricted, and therefore talk about some number, definite or indefinite, of objects the speaker has in mind – but never less than one.</para>
<para><indexterm type="general-imported"><primary>masses</primary><secondary>rule for implicit outer quantifier</secondary></indexterm> <indexterm type="general-imported"><primary>sets</primary><secondary>rule for implicit outer quantifier</secondary></indexterm> Understanding the implicit outer quantifier requires rules of greater subtlety. In the case of mass and set descriptors, a single rule suffices for each: reference to a mass is implicitly a reference to some part of the mass; reference to a set is implicitly a reference to the whole set. Masses and sets are inherently singular objects: it makes no sense to talk about two distinct masses with the same components, or two distinct sets with the same members. Therefore, the largest possible outer quantifier for either a set description or a mass description is
<oldjbophrase>piro</oldjbophrase>, the whole of it.</para>
<para> <indexterm type="general-imported"><primary>plural masses</primary><secondary>possible use for</secondary></indexterm> (Pedantically, it is possible that the mass of water molecules composing an ice cube might be thought of as different from the same mass of water molecules in liquid form, in which case we might talk about
<oldjbophrase>re lei djacu</oldjbophrase>, two masses of the water-bits I have in mind.)</para>
<para><indexterm type="general-imported"><primary>pisu'o</primary><secondary>explanation of meaning</secondary></indexterm> <indexterm type="general-imported"><primary>piro</primary><secondary>explanation of meaning</secondary></indexterm> Why
<valsi>pi</valsi>? It is the Lojban cmavo for the decimal point. Just as
<oldjbophrase>pimu</oldjbophrase> means
- <quote><inlineequation><mathphrase>.5</mathphrase></inlineequation></quote>, and when used as a quantifier specifies a portion consisting of five tenths of a thing,
+ <quote><inlinemath>.5</inlinemath></quote>, and when used as a quantifier specifies a portion consisting of five tenths of a thing,
<oldjbophrase>piro</oldjbophrase> means a portion consisting of the all-ness – the entirety – of a thing. Similarly,
<oldjbophrase>pisu'o</oldjbophrase> specifies a portion consisting of at least one part of a thing, i.e. some of it.</para>
<para> <indexterm type="general-imported"><primary>portion</primary><secondary>on set contrasted with on individual</secondary></indexterm> <indexterm type="general-imported"><primary>outer quantifiers</primary><secondary>for expressing subsets</secondary></indexterm> <indexterm type="general-imported"><primary>subsets</primary><secondary>expressing with outer quantifiers</secondary></indexterm> Smaller quantifiers are possible for sets, and refer to subsets. Thus
<oldjbophrase>pimu le'i nanmu</oldjbophrase> is a subset of the set of men I have in mind; we don't know precisely which elements make up this subset, but it must have half the size of the full set. This is the best way to say
<quote>half of the men</quote>; saying
<oldjbophrase>pimu le nanmu</oldjbophrase> would give us a half-portion of one of them instead! Of course, the result of
<oldjbophrase>pimu le'i nanmu</oldjbophrase> is still a set; if you need to refer to the individuals of the subset, you must say so (see
<valsi>lu'a</valsi> in
@@ -2086,32 +2086,32 @@
<valsi>me'o</valsi> refer to the actual expression, rather than its value. Thus
<xref linkend="example-random-id-qLIm"/> and
<xref linkend="example-random-id-qLis"/> above have the same meaning, the number four, whereas</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-sW7u">
<title>
<anchor xml:id="c6e15d4"/>
</title>
<interlinear-gloss>
<jbo>me'o vo</jbo>
<gloss>the-expression four</gloss>
- <en><quote><inlineequation><mathphrase>4</mathphrase></inlineequation></quote></en>
+ <en><quote><inlinemath>4</inlinemath></quote></en>
</interlinear-gloss>
</example>
<para>and</para>
<example role="interlinear-gloss-example" xml:id="example-random-id-3s82">
<title>
<anchor xml:id="c6e15d5"/>
</title>
<interlinear-gloss>
<jbo>me'o re su'i re</jbo>
<gloss>the-expression two plus two</gloss>
- <en><quote><inlineequation><mathphrase>2+2</mathphrase></inlineequation></quote></en>
+ <en><quote><inlinemath>2+2</inlinemath></quote></en>
</interlinear-gloss>
</example>
<para>refer to different pieces of text.</para>
<para> <indexterm type="general-imported"><primary>mathematical expressions</primary><secondary>implicit quantifier for</secondary></indexterm> <indexterm type="general-imported"><primary>numbers</primary><secondary>implicit quantifier for</secondary></indexterm> The implicit quantifier for numbers and mathematical expressions is
<valsi>su'o</valsi>, because these sumti are analogous to
<valsi>lo</valsi> descriptions: they refer to things which actually are numbers or pieces of text. In the case of numbers (with
<valsi>li</valsi>), this is a distinction without a difference, as there is only one number which is 4; but there are many texts
<quote>4</quote>, as many as there are documents in which that numeral appears.</para>
</section>
diff --git a/todocbook/README-tags b/todocbook/README-tags
index 3ddcddd..b0bfff5 100644
--- a/todocbook/README-tags
+++ b/todocbook/README-tags
@@ -88,10 +88,25 @@ not(@glossary) or @glossary != 'false') and ( not(@role) or ( @role !=
;<rafsi>\1</rafsi>;g' [0-9]*
;<letteral>\1</letteral>;g' [0-9]*
;<diphthong>\1</diphthong>;g' [0-9]*
;<morphology>\1</morphology>;g' [0-9]*
<pronunciation>
<jbo>.i,ai,i,ai,on.</jbo>
<ipa>[ʔi jaj ji jaj jonʔ]</ipa>
</pronunciation>
+
+<lojbanization>
+ <jbo>cobra</jbo>
+ <jbo>sinc,r,kobra <comment>prefix rafsi</comment></jbo>
+</lojbanization>
+
+<grammar-template>X TENSE le nu Y</grammar-template>
+
+<place-structure>x1 (seller) sells x2 (goods) to x3 (buyer) for x4
+(price)</place-structure>
+
+<inlinemath>(1000 * 6) - (500 * 0) + (100 * 0) - (10 * 15) - 3 =
+5847</inlinemath>
+
+<math>(1000 * L) - (500 * A) + (100 * H) - (10 * R) - V</math>
diff --git a/todocbook/docbook2html_preprocess.xsl b/todocbook/docbook2html_preprocess.xsl
index 03cf104..65273d7 100644
--- a/todocbook/docbook2html_preprocess.xsl
+++ b/todocbook/docbook2html_preprocess.xsl
@@ -288,26 +288,91 @@
<xsl:value-of select="text()"/>
</foreignphrase>
</xsl:template>
<xsl:template match="diphthong">
<foreignphrase xml:lang="jbo" role="diphthong">
<xsl:value-of select="text()"/>
</foreignphrase>
</xsl:template>
- <xsl:template match="oldjbophrase">
+ <xsl:template match="grammar-template[not(boolean(parent::title)) and not(boolean(parent::term)) and not(boolean(parent::member)) and not(boolean(parent::secondary))]" priority="100">
+ <blockquote role="grammar-template">
+ <para>
+ <xsl:value-of select="text()"/>
+ </para>
+ </blockquote>
+ </xsl:template>
+
+ <xsl:template match="grammar-template" priority="1">
+ <phrase role="grammar-template">
+ <xsl:value-of select="text()"/>
+ </phrase>
+ </xsl:template>
+
+ <xsl:template match="oldjbophrase[not(boolean(parent::title)) and not(boolean(parent::term)) and not(boolean(parent::member)) and not(boolean(parent::secondary))]" priority="100">
+ <blockquote role="oldjbophrase">
+ <para>
+ <xsl:value-of select="text()"/>
+ </para>
+ </blockquote>
+ </xsl:template>
+
+ <xsl:template match="oldjbophrase" priority="1">
<phrase role="oldjbophrase">
<xsl:value-of select="text()"/>
</phrase>
</xsl:template>
+ <xsl:template match="place-structure[not(boolean(parent::title)) and not(boolean(parent::term)) and not(boolean(parent::member)) and not(boolean(parent::secondary))]" priority="100">
+ <blockquote role="place-structure">
+ <para>
+ <xsl:value-of select="text()"/>
+ </para>
+ </blockquote>
+ </xsl:template>
+
+ <xsl:template match="place-structure" priority="1">
+ <phrase>
+ <xsl:value-of select="text()"/>
+ </phrase>
+ </xsl:template>
+
+ <xsl:template match="inlinemath" priority="1">
+ <inlineequation><mathphrase>
+ <xsl:value-of select="text()"/>
+ </mathphrase></inlineequation>
+ </xsl:template>
+
+ <xsl:template match="math" priority="1">
+ <informalequation><mathphrase>
+ <xsl:value-of select="text()"/>
+ </mathphrase></informalequation>
+ </xsl:template>
+
+ <xsl:template match="lojbanization">
+ <informaltable>
+ <tgroup cols="2">
+ <xsl:for-each select="jbo">
+ <entry>
+ <xsl:value-of select="text()"/>
+ </entry>
+ <xsl:if test="boolean(comment)">
+ <entry>
+ <xsl:value-of select="comment/text()"/>
+ </entry>
+ </xsl:if>
+ </xsl:for-each>
+ </tgroup>
+ </informaltable>
+ </xsl:template>
+
<xsl:template match="valsi">
<xsl:variable name="slug">
<xsl:call-template name="make_slug">
<xsl:with-param name="input" select="text()"/>
</xsl:call-template>
</xsl:variable>
<foreignphrase xml:lang="jbo">
<indexterm type="lojban-words">
<primary><xsl:value-of select="text()"/></primary>
</indexterm>
--
You received this message because you are subscribed to the Google Groups "BPFK" group.
To post to this group, send email to bpfk-list@googlegroups.com.
To unsubscribe from this group, send email to bpfk-list+unsubscribe@googlegroups.com.
For more options, visit this group at http://groups.google.com/group/bpfk-list?hl=en.