[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: Anselmisms and gadro



>From: "Jorge Llambias" <jjllambias@hotmail.com>
>Date: Wed, 25 Aug 1999 08:56:27 PDT
>
>From: "Jorge Llambias" <jjllambias@hotmail.com>
>
>
>la mark cusku di'e
>
>>The thing to remember about all this is that {lo broda} is the same,
>>semantically, as {da poi [ke'a] broda}, with the exception that the latter 
>>also asserts the existence of such a thing, while the
>>former doesn't.
>
>I disagree about the exception. They are the same in all respects.
>A sumti by itself doesn't assert the existence of anything.
>If you say either {lo broda cu brode} or {da poi broda cu brode}
>then you need for at least one thing to be a broda in order for
>both assertions to be true. And that the thing also be a brode,
>of course.

Well, I understand that that's the official take on it, and I'm not sure I
can disagree.  After all, it makes a difference.  Let's see... given the
lujvo {zilcrida} meaning "fairy" but with the x2 (mythos) place removed:
"real life" fairies.  If I say

lo zilcrida cu blanu / a fairy is blue

(I'd actually be more likely to say loi zilcrida)

if there actually are no real-life fairies, I'd think my statement would be
considered true.  Statements about members of the nullset are true, right?
But

da poi zilcrida cu blanu / something1 which-is-a fairy is blue

is considered the same as {so'u da zo'u da poi zilcrida...}: there exists
at least one x1, such that it's a fairy, is blue.  And if there are no
fairies, then the statement is false, since I asserted existence.  I
thought the {lo} way of doing it referred to a (putative) member of the set
without necessarily asserting its existence.  A sumti doesn't assert
existence, but I thought that free variables are implicitly quantified by
{su'o} and implicitly in a prenex.

>>({le broda} is correspondingly {da voi broda}).
>
>I think that's not right. {le broda} is each of the broda
>I have in mind, {da voi broda} is some thing that I am
>describing as a broda. The quatifier is crucially different.
>{le broda} is {roda voi broda}. Usually we have only one
>thing in mind when using {le}, in which case the difference
>disappears, but not in the general case.
>
>>Similarly, "the x such that
>>Fyx" is {da poi de se broda da[/ke'a]} in {da poi} syntax,
>
>That's "some x such that ..." not "the x such that...", which
>is what pc wanted.

This is the age-old chestnut of Lojban's habit of conflating
non-veridicality with specificity.  There's not much I can do about that.

~mark