[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: possible A-F...
--- In lojban@y..., thinkit8@l... wrote:
> ok, making sure not to look at historical numerals, which is
looking
> outward for answers instead of inward, i sketched what could by
> symbols A-F. basically i looked at a standard 8-segment display
and
> saw what was easy to draw and also didn't have the rotation problem
> of 6 and 9. here's what i came up with:
>
> *** * * * *** ***
> * * * * * *
> * *** *** *** * ***
> * * * * * *
> * * * * *** *
>
> that's 10-15, in order. now all i have to do is wait generations
to
> have hexadecimal accepted, then more generations for the numbers to
> be standardized.
The display actually only has 7 segments. Also, the representations
of 2 and 5 are reflections of each other.
Here are all the 128 (2^7) possibilities:
*** * * *** *** *** *** *** *** * * * *
* * * * * * * *
* * *** * * * * *** * * * * *** *
* * * * *
* * *** * * *** *
* * * * * * *** *** *** *** ***
* * * * * * * * * * * *
* * * *** * * * * *** *** *** * * * * * * *** * * * *
* * * * * * * * * * *
* *** * * *** * * *** * * *** *** * * ***
*** *** *** *** *** *** *** *** *** *** * * * * * * * * * * *
* * * * * * * * * * * * * * *
*** * * * * *** *** *** * * * * *** * * * * * * *** *** ***
* * * * * * * * * * * *
* * *** * * *** * * *** *** * * *** * * ***
* * * * * * * * * *** *** *** ***
* * * * * * * * * * * * * * * * *
* * * * * *** *** *** * * * * * *** *** *** * * *** * * * * * *
* * * * * * * * * * * * * * * * * *
* * *** *** * * *** * * *** *** * * *** *** *** * * ***
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** * *
* * * * * * * * * * * * * *
*** *** *** * * * * * *** *** *** * * * * * *** *** *** * * ***
* * * * * * * * * * * * * * * * * * *
* * *** * * *** *** * * *** * * *** *** * * *** *** *** *
* * * * * * * * * * * * * * * * * * *** *** ***
* * * * * * * * * * * * * * * * * * * * * * * *
*** *** * * * * * * *** *** *** * * *** *** *** * * *** *** *** ***
* * * * * * * * * * * * * * * * * * * * *
* *** * * *** *** * * *** *** *** * * *** *** *** *** * * ***
*** *** *** *** *** *** *** *** *** *** *** *** * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *** *** *** * * *** *** *** * * *** *** *** *** * * ***
* * * * * * * * * * * * * * * * * * * * * * * * * *
* * *** *** * * *** *** *** * * *** *** *** *** * * *** *** *** ***
* *** *** *** *** *** *** * * ***
* * * * * * * * * * * * * * *
*** *** *** *** * * *** *** *** ***
* * * * * * * * * * * * * * * *
*** * * *** *** *** *** *** *** ***
Eliminating the 1 possibility with all 7 segments blank (because that
one is actually just a space, so if this digit comprised the complete
number then the number would probably not be recognised as being
there, if this digit did not comprise the complete number and was at
the beginning or end of the number then the number would probably be
mistakenly identified as a different number, and if this digit did
not comprise the complete number and was not at the beginning or end
of the number then the number would probably be mistakenly identified
as two separate numbers separated by a space) and the 47
possibilities that aren't connected (because they could be mistakenly
thought to be two separate numbers) leaves all the following 80
possibilities:
*** * * *** *** * * * *
* * * * * * * *
* * *** * * * * *** * *** * *** *** * *
* * * * * * * *
* * *** * * * * *** ***
*** *** *** *** *** * * * * * * * * ***
* * * * * * * * * * * * * * * *
* * *** * *** * *** *** *** * *** *** * *** *** *** * * ***
* * * * * * * * * * * * * *
* * * * *** * * *** * * *** *** ***
*** *** *** *** *** *** *** *** * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * *
* * * * *** *** * *** *** * *** *** *** *** *** * * *** *** ***
* * * * * * * * * * * * * * * * * * * *
* * * * *** * * *** * * * * *** *** *** * * *** ***
* *** *** *** *** *** *** *** *** *** *** *** *** *** * * * *
* * * * * * * * * * * * * * * * * * * * * * *
* * *** *** *** * * * * * * *** *** *** * * *** *** *** * * *** ***
* * * * * * * * * * * * * * * * * * * * * * * * *
*** *** * * * * *** *** * * *** *** *** * * *** *** *** * * ***
* * * * * * *** *** *** *** *** *** * * ***
* * * * * * * * * * * * * * * * * * * *
*** * * *** *** *** *** *** * * *** *** *** ***
* * * * * * * * * * * * * * * * * * * * *
*** *** *** *** * * *** *** *** *** *** *** ***
Organising all these 80 possibilities into rows so that each row
contains only reflections and rotations of the other possibilities in
that row gives all the following 29 rows:
***
***
* *
* *
* * * *
* *
* *
***
*** ***
* *
* * * *
* *
*** ***
* *
* *
*** *** *** ***
* *
* *
* *
* *
* *
* *
* *
***
* *
* * * *
* *
***
*** ***
* *
*** *** *** ***
* *
*** ***
*** *** * *
* * * *
* * * *
* * * *
* * *** ***
* *
* *
*** ***
* *
* *
* *
* *
*** ***
* *
* *
* *
* *
*** ***
* *
* *
***
* *
*** ***
* *
***
*** *** * *
* * * * * *
* * * * * * * *
* * * * * *
* * *** ***
*** *** * *
* * * *
*** *** *** ***
* * * *
* * *** ***
*** *** * *
* * * *
*** *** *** ***
* * * *
* * *** ***
*** ***
* *
* *
* *
*** ***
* * * * * *
* * * * * *
*** *** *** ***
* * * * * *
* * * * * *
*** *** * *
* * * * * *
*** *** *** ***
* * * * * *
* * *** ***
*** * *
* * * *
* * * *
* * * *
* * ***
*** *** *** ***
* * * * * *
* * * * * * * *
* * * * * *
*** *** *** ***
*** *** * * * *
* * * * * *
*** *** *** ***
* * * * * *
* * * * *** ***
*** ***
* *
*** ***
* *
*** ***
*** ***
* *
*** ***
* *
*** ***
* *
* *
***
* *
* *
*** * *
* * * *
*** ***
* * * *
* * ***
*** *** *** ***
* * * * * *
*** *** *** ***
* * * * * *
*** *** *** ***
***
* *
* *
* *
***
***
* *
***
* *
***
10 possibilities are already used for the digits 0 to 9. Here are all
10:
*** * *** *** * * *** *** *** *** ***
* * * * * * * * * * * * * *
* * * *** *** *** *** *** * *** ***
* * * * * * * * * * * * *
*** * *** *** * *** *** * *** ***
Eliminating these 10 and all 10 reflections and rotations of them (20
possibilities altogether) leaves all the following 60 possibilities
organised into all the following 21 rows:
***
***
* *
* *
* * * *
* *
* *
***
*** ***
* *
* * * *
* *
*** ***
* *
* *
*** *** *** ***
* *
* *
***
* *
* * * *
* *
***
*** ***
* *
*** *** *** ***
* *
*** ***
* *
* *
*** ***
* *
* *
* *
* *
*** ***
* *
* *
* *
* *
*** ***
* *
* *
***
* *
*** ***
* *
***
*** *** * *
* * * * * *
* * * * * * * *
* * * * * *
* * *** ***
*** *** * *
* * * *
*** *** *** ***
* * * *
* * *** ***
*** *** * *
* * * *
*** *** *** ***
* * * *
* * *** ***
*** ***
* *
* *
* *
*** ***
*** *** * *
* * * * * *
*** *** *** ***
* * * * * *
* * *** ***
*** * *
* * * *
* * * *
* * * *
* * ***
*** *** *** ***
* * * * * *
* * * * * * * *
* * * * * *
*** *** *** ***
*** *** * * * *
* * * * * *
*** *** *** ***
* * * * * *
* * * * *** ***
* *
* *
***
* *
* *
*** * *
* * * *
*** ***
* * * *
* * ***
So you could choose any 6 of the above 60 possibilities as long as
each one was from a different one of the 21 rows, one for each of the
6 hexadecimal digits A to F, which are used to represent numbers 10
to 15.
Incidentally, why do you want hexadecimal to become accepted anyway?
What's wrong with binary? ;)
Sincerely,
Robert