[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Logic course
As part of my studies, I now have a compulsory study of logic (for computer
scientists) for the next 10 weeks or so. As I'm coming up to my year of
Lojban, I've now covered most of the concepts we will be studying (if not
formally), so I thought it was time that Lojban be explored a bit as far as
working with logic is concerned.
Here are some of the propositions from our first exercises, which I've tried
to render into Lojban. (the "conventional" notation follows my .sig)
1){roda de zo'u li da su'i de du li no}
(can only da de and di (w/ subscripts) be used as bound variables ?) what
does
1'){roxy. zy. zo'u li xy su'i zy. du li no} mean ? the same as 1)?
how long do bound variables last, if propositions are logically connected ?
2){roda rode rodi zo'u du li da su'i de li da su'i di li no .inaja du li de
li di} this can also be written
2') {roda su'epada zo'u du li da su'i de li no}, but we are just starting
and are not working with languages as powerfull as lojban yet .uinai
note: .i du li da li de .i li da du li de .i li da li de du are all
equivalent, oh and we are working with whole numbers
3){da zo'u li xy. du li da pi'i da}
4){da zo'u li xy. du li da su'i da} (2 did not belong to universal constants
in this exercise)
and here's one I'm really not sure about as far as binding is concerned (if
you work out that it is false, you are right though):
5){roda zo'u de zo'u li da du li de te'a re .inaja di zo'u li da du li di
pi'i vo}
--
http://www.myepfl.ch/gregory.dyke
.i lo'e to'e makcu cu djica lenu tolcumla morsi kei lo telda'a
.i lo'e je'a makcu cu go'i to'ebo le se go'i
--------------
A, E are the usual upsidedown quantifiers
1)AxEy(x + y = 0)
2)AxAyAz(x + y = x + z = 0 => y = z)
3)Ey(x = y * y)
4)Ey(x = y + y)
5)Ax(Ez(x = z**2) => Ey(x = y * 4))