[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Wikineurotic] Wiki page gadri: an unofficial commentary from a logical point of view changed by guskant
The page gadri: an unofficial commentary from a logical point of view was changed by guskant at 10:25 UTC
You can view the page by following this link:
http://www.lojban.org/tiki/gadri%3A%20an%20unofficial%20commentary%20from%20a%20logical%20point%20of%20view
You can view a diff back to the previous version by following this link:
http://www.lojban.org/tiki/tiki-pagehistory.php?page=gadri%3A%20an%20unofficial%20commentary%20from%20a%20logical%20point%20of%20view&compare=1&oldver=5&newver=6
***********************************************************
The changes in this version follow below, followed after by the current full page text.
***********************************************************
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
@@ -Lines: 294-370 changed to +Lines: 294-370 @@
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
!!!!# Repeating inner quantification
- {lo PA ''sumti''} 1
+ Because {lo PA ''sumti''} is defined, we can repeat inner quantification to form an argument.
^
- ;: lo mulno kardygri cu gunma lo vo loi paci karda ~hs~ ''1134''<br />;: su'o da zo'u loi re lo'i ro mokca noi sepli py noi mokca ku'o da cu relcuktai ~hs~ ''P2''^
+ ;Example: lo mulno kardygri cu gunma lo vo loi paci karda ~hs~ ''A full deck consists of four groups of thirteen cards.''<br />;: su'o da zo'u loi re lo'i ro mokca noi sepli py noi mokca ku'o da cu relcuktai ~hs~ ''Two sets of points that are equidistant from a point P is a double circle.''^
!!!!# Problems on inner quantification
!!!!!# Cannot say zero
- gadri ((|#A_logical_axiom_on_plural_constant|2.2.6)) {lo broda} {su'oi da zo'u da broda} {lo no broda} 0
+ Because an argument formed by gadri is a plural constant, {lo broda} implies {su'oi da zo'u da broda} according to the logical axiom on plural constant shown in ((|#A_logical_axiom_on_plural_constant|Section 2.2.6)). That is to say, the expression {lo no broda} implies "there are what are broda, which are counted 0", which seems meaningless.
- {naku su'oi da} <br />
+ This means that official Lojban cannot express negation of existence of plural variable {naku su'oi da}, which is nevertheless necessary, for example in the following situation:
^ lo xo prenu cu jmaji gi'e jukpa gi'e citka ~hs~~--~ no~pp~
- ~/pp~''''^
+ ~/pp~''"How many people gathered, cooked and ate?" "zero."''^
- {lo no prenu cu jmaji gi'e jukpa gi'e citka}
+ This response is an abbreviated form of {lo no prenu cu jmaji gi'e jukpa gi'e citka}.
- {lo no prenu} selbri {jmaji} (je) {jukpa} (ja) {citka} (je) {jmaji} {naku su'o da}={no da} {citka} {lo} {loi}={lo gunma be lo}
+ This proposition means that {lo no prenu} satisfies selbri {jmaji} collectively and (je) non-distributively, {jukpa} collectively or (ja) distributively, {citka} non-collectively and (je) distributively. Because it includes selbri {jmaji} to be satisfied non-distributively, the sumti cannot be replaced by negation of existence of bound singular variable {naku su'o da}={no da}. Moreover, because it includes selbri {citka} to be satisfied non-collectively, {lo} of the sumti cannot be replaced by {loi}={lo gunma be lo}.
- {lo no broda} <br /> {lo PA broda} PA=0 <br />;{lo no broda} :||
+ For making such a proposition meaningful, it is essential to give an expression {lo no broda} a meaning of negation of existence of plural variable.<br />For this purpose, I suggest the following definition valid in the case that PA=0 for {lo PA broda}.<br />;Unofficial definition of {lo no broda}:||
lo no broda ~hs~|~hs~ =ca'e ~hs~|~hs~ naku su'oi da poi ke'a broda
||
- {naku lo broda}
+ If it were defined as {naku lo broda}, the negation would have spanned the whole proposition, and it would not have implied quantification. I abandoned therefore such a definition.)
!!!!!# Cannot quantify material noun or something
- ((|#Inner_quantification|3.1))1 {(su'o) N mei} {lo N broda}
+ Axiom 1 of ((|#Inner_quantification|Section 3.1)) excludes sumti that is neither an individual nor individuals from expressions {(su'o) N mei} and {lo N broda}.
- {piPA} <br />((BPFK Section: gadri|piPA ))
+ Can we use {piPA} for sumti that is neither an individual nor individuals, then? No.<br />((BPFK Section: gadri|Actually, piPA is defined only for outer quantification.))
||
piPA ''sumti'' ~hs~|~hs~ lo piPA si'e be pa me ''sumti''
||
- {piPA} {lo piPA si'e} {piPA si'e} x2 {pa me ''sumti''} ((BPFK Section: gadri|PA broda ))
+ As we can see in the definition, the body of outer quantification by {piPA} is plural constant {lo piPA si'e}, which is not a bound singular variable. However, x2 of {piPA si'e} is {pa me ''sumti''}, to which ((BPFK Section: gadri|the defintion of PA broda)) is applied:
||
PA broda ~hs~|~hs~ PA da poi broda
||
- {me ''sumti''} x1 {piPA}
+ As a result, {piPA ''sumti''} is defined only when there is an individual that satisfies x1 of {me ''sumti''}. That is to say, what is neither an individual nor individuals is excluded also from an expression of outer quantification with {piPA}.
- {piPA} <br /> {piPA} <br />; {piPA} :||
+ What would be if {piPA} were defined also for inner quantification?<br />In that case, the following definition would be desirable to conform the definition of {piPA} of outer quantification:<br />; Unofficial definition of {piPA} of inner quantification:||
lo piPA broda ~hs~|~hs~ =ca'e ~hs~|~hs~ zo'e noi ke'a piPA si'e be lo pa broda
||
- {lo pa broda} {piPA}
+ This definition of {piPA} of inner quantification still excludes what is neither an individual nor individuals unless {lo pa broda} can express what is neither an individual nor individuals.
- {PA si'e} ((BPFK Section: Numeric selbri| {si'e} BPFK)) {pagbu}
+ Why don't we use {PA si'e} to express quantification of what is neither an individual nor individuals? <br />It is possible, but ((BPFK Section: Numeric selbri|BPFK's current definition of {si'e})) depends on {pagbu}:
||
x1 number si'e x2 ~hs~|~hs~ x1 pagbu x2 gi'e klani li number lo se gradu be x2
||
- {pagbu} x1 x2 [https://groups.google.com/d/msg/lojban/RAtE7Yk-dqw/nUbZiwmB2M0J|{si'e} ] {PA si'e} PA 1 {si'e} {si'e}
+ If we interpret {pagbu} so that x1 is not larger than x2 (and this is ordinary interpretation), [https://groups.google.com/d/msg/lojban/RAtE7Yk-dqw/nUbZiwmB2M0J|{si'e} is very inconvenient because the unit should be changed every time counting up.] If {si'e} were defined so that PA of {PA si'e} could be larger than 1, {si'e} would have been pragmatic for quantification of what is neither an individual nor individuals.
- ((|#Inner_quantification|3.1))1 (D1) (D2) (D3) <br /> {ko'a su'o pa mei} {pa mei} <br /> ko'a (D2)
+ Besides those considerations, if we abandon Axiom 1 of ((|#Inner_quantification|Section 3.1)), Definitions (D1) (D2) (D3) can be applied to what is neither an individual nor individuals.<br />In this case, a speaker should select some plural constants, and define them to be {ko'a} such that {ko'a su'o pa mei}; the selection must be done attentively so that plural constants that are {pa mei} do not overlap with each other.<br />Those preparation of {ko'a} and (D2) implies only
||
ganai ko'a pa mei
gi ro'oi de poi me ko'a zo'u de me ko'a
||
- {ko'a pa mei} ko'a
+ Under these conditions, there is no need that {ko'a} of {ko'a pa mei} is an individual.
- ((|#Inner_quantification|3.1))1 (D1) (D2) (D3) (D1) {de} {gi'e su'o pa mei} 1 {de} <br />;1:||
+ When we use Definitions (D1) (D2) (D3) without using Axiom 1 of ((|#Inner_quantification|Section 3.1)), a condition {gi'e su'o pa mei} must be added to {de} of (D1)When Axiom 1 is used, referents in the domain of variable {de} satisfies this condition automatically). <br />;Unofficial definitions under the condition that Axiom 1 is abandoned:||
(D1') ko'a su'o N mei ~hs~|~hs~ =ca'e ~hs~|~hs~ su'oi da poi me ko'a ku'o su'oi de poi me ko'a gi'e su'o pa mei zo'u ge da su'o N-1 mei ginai de me da
(D2) ko'a N mei ~hs~|~hs~ =ca'e ~hs~|~hs~ ko'a su'o N mei gi'e nai su'o N+1 mei
(D3) lo PA broda ~hs~|~hs~ =ca'e ~hs~|~hs~ zo'e noi ke'a PA mei gi'e broda
||
- {piPA}
+ Using these definitions, inner quantification of what is neither an individual nor individuals becomes possible. Moreover, "Unofficial definition of {piPA} of inner quantification" discussed above becomes able to be applied to what is neither an individual nor individuals.
- {X me X} {su'o pa mei} {me}
+ The diagram below shows a procedure of counting up what is neither an individual nor individuals represented with a directed graph. In this diagram, loops such as {X me X} are omitted for simplicity, though they exist. Among infinite number of vertices (plural constants), the vertices that a speaker selected as {su'o pa mei} are colored pink. Counting up corresponds to selecting a tree that is a subgraph of a directed graph formed with {me}, for example the part of blue color in the diagram.
{img fileId="9" thumb="y" rel="box[g]"}
***********************************************************
The new page content follows below.
***********************************************************
^Translation of this page is incomplete.^
((BPFK Section: gadri|BPFK's gadri page)) contains expressions misleading people who have at least a little knowledge of logic ([https://groups.google.com/d/topic/lojban/RAtE7Yk-dqw/discussion|discussion]).
I will make here a commentary on BPFK's gadri so that it is undersood by them correctly.
{maketoc}
!!# Glossary
We will use the following terms in this commentary.
;__argument (sumti)__: Symbol that refers to a referent, or that another argument can be substituted for.
;__universe of discourse__: Set of all referents of arguments. It is naturally a universe that is discussed. A universe of discourse depends on the context.
;__constant__: Argument that refers to a referent.
;__variable__: Argument as a place holder. It does not refer to anything. It is to be substituted for. Variable other than bound variable that will be defined bellow is called __free variable__. The truth value of a sentence that includes a free variable is indefinite. Such a sentence is called __open sentence__.
^In Lojban, {ke'a} and {ce'u} are always free variables. A sentence in NOI-clause or NU-clause with {ce'u} is open. (A sentence in NU-clase with no {ce'u} has a truth value, but each of the inside and the outside of NU-clause has an independent universe of discourse, and thus each of them has an independent truth value (for example, see [http://dag.github.io/cll/9/7/|CLL9.7]). In definitions of words in Lojban, ko'V/fo'V series {ko'a, ko'e, ...} of selma'o KOhA4 are used as free variables, but it is only a custom for convenience. All cmavo of KOhA2,3,4,5,6 and {zo'e} of KOhA7 are essentially constants.^
;__quantify__: In substituting possible arguments one by one for a variable in a sentence, count the number of referents that make the sentence true, and prefix the number to the variable.
;__quantifier__: Number used for quantification. Besides {pa}, {re}, {vei ny su'i pa (ve'o)} and so on, {ro} "all" and {su'o} "there is one or more" are also quantifiers.
;__bound variable__: Variable prefixed by a quantifier. As a result of quantification, there is no room for substituting an arbitrary argument for the variable.
^In Lojban, {da}, {de} and {di} are bound variables. For example, {ro da zo'u da broda} means "For all {da} in the universe of discourse, {da broda} is true." In the case that {da}, {de} or {di} are not prefixed by a quantifier, they are regarded as implicitly prefixed by {su'o}.^
;__domain__: Range of referents to be substituted for a variable, or range to be considered in counting referents in quantification.
^In Lojban, a domain of a bound variable can be limited with an expression {da poi...}. For example, {ro da poi ke'a broda zo'u da brode} means "For all {da} that are x1 of {broda} in the universe of discourse, {da brode} is true." If {poi...} does not follow {da}, the domain is the whole universe of discourse.^
;__tautology__: Sentence that is always true independently of context. {ko'a du ko'a} etc.
;__logical axioms__: Sentences selected from tautologies so that all tautologies are proved from them with rules of inference that are defined.
!!# Plural quantification
In order to understand arguments of Lojban from a logical point of view, it is essential to have a knowledge of __plural quantification__.
Plural quantification was invented in order to facilitate expression of proposition that is meaningful only when the referent of an argument is plural.
^
;Example: People gathered, cooked and ate.^
Logically, this sentence is a proposition that consists of a constant "people" and three predicates "gathered" "cooked" and "ate". The predicates are different from each other in property of treating the argument. We will discuss precisely how the argument in the sentence is treated.
!!!# Collectivity and distributivity
Consider the expression "people gathered": based on the meaning of the predicate "gathered", the constant "people" should refer to plural people.
When referents of an argument satisfy a predicate as collective plural things like this, we express it as "an argument satisfies an predicate __collectively__", or "the argument has __collectivity__".
As for each of the plural people referred to by the constant, each sentence such that "Alice gathered", "Bob gathered" and so on is nonsense.
When each referent referred to by a constant cannot satisfy a predicate alone, we express it as "an argument satisfies an predicate __non-distributively__".
On the other hand, in the expression "people ate", although the constant "people" refers to plural people, the predicate "ate" is satisfied by each person. That is to say, each sentence such that "Alice ate", "Bob ate" and so on is meaningful.
When each referent referred to by a constant satisfies a predicate alone, we express it as "an argument satisfies an predicate __distributively__", or "the argument has __distributivity__".
Moreover, if the predicate "eat" means an act "put food in a mouth, bite it, let it pass through an esophagus and send it to a stomach", it is hardly considered that "people" satisfies "eat" collectively. Even if a person helps another to eat, the helper is not eater, and the eater is not collective people but an individual.
When each referent referred to by a constant cannot satisfy a predicate as collective plural things, we express it as "an argument satisfies an predicate __non-collectively__".
(However, it is possible to interpret the predicate "eat" as involving collectivity. For example, if it is interpreted as "put food away from outside to inside of body", we may say "collectively eat" to express an event that people eat and consume a mass of food together.)
There are also predicates that allow both properties "collevtivity" and "distributivity".
"People cooked" may mean that plural people knead paste of pizza together, and that each of them is in charge of cakes or pot-au-feu. In this case, the constant "people" refers to plural people, and they cooked pizza collectively, cakes and pot-au-feu distributively. The constant "people" thus satisfies the predicate "cooked" collectively and distributively.
Note that the constant "people" refers to what is common to three predicates "gathered", "cooked" and "ate". No matter if a constant satisfies predicates collectively or distributively, the referent is the same.
If we use an argument "a set of people" in the case of satisfying a predicate collectively, it might be possible to interpret the predicate "gathered" so that the argument satisfies it, but the same argument cannot satisfy the predicate "ate", because we can hardly say that a set of people, which is an abstract entity, performs "ate".
Using plural constants and plural variables that will be discussed in the following sections, we can express plural things in the form of predicate logic without using sets.
!!!# Plural constant and plural variable
An argument that refers to referent without introducing a notion of sets, without distinguishing collectivity and distributivity, without distinguishing plurality and singularity, is called __plural constant__.
A variable for which a plural constant can be substituted is called __plural variable__.
Quantifying a plural variable is called __plural quantification__. A quantifier used for plural quantification is called __plural quantifier__. A plural variable prefixed with a plural quantifier is called a __bound plural variable__.
!!!!# me and jo'u
We introduce relations between plural constants and plural variables: {me} and {jo'u}.
||
X me Y (me'u) ~hs~|~hs~ X is among Y
||
X and Y represent here plural constants or plural variables. A cluster {me Y (me'u)} is a selbri in Lojban grammar. {me'u} is an elidable terminator of structure beginning with {me}.
{me} has the following properties with arbitrary arguments X, Y and Z:
# X me X (reflexivity)
# X me Y ijebo Y me Z inaja X me Z (transitivity)
# X me Y ijebo Y me X ijo X du Y (identity)
The property 3 means that the identity between referents of X and Y is represented with {me}, as a relation that {X me Y ijebo Y me X}.
||
X jo'u Y ~hs~|~hs~ X and Y
||
{jo'u} combines two arguments X and Y into one plural constant or one plural variable.
{jo'u} has the following properties with arbitrary arguments X and Y:
# X me X jo'u Y
# X jo'u Y du Y jo'u X
# X jo'u X du X
The property 2 means that the referent of the whole argument does not vary when two arguments combined by {jo'u} are interchanged with each other. The property 3 means that {jo'u} does not add any referent when it combines an argument with itself.
Using {jo'u}, the following expression is possible:
^
;Example: B and C gathered, cooked and ate.
;: by jo'u cy jmaji gi'e jukpa gi'e citka^
Each of {by} and {cy} is a plural constant.
The predicate {jukpa} (cook) can be interpreted collectively and/or distributively, but the plural constant {by jo'u cy} says nothing about whether it satisfies {jukpa} collectively and/or distributively. If we want to make explicit that they cooked "collectively", we say {by joi cy} using ((BPFK Section: Non-logical Connectives|{joi} that combines two arguments into an argument that satisfies a predicate non-distributively)), or {lu'o by jo'u cy} using {lu'o} that will be discussed in ((|#Relation_between_lu_a_lu_o_lu_i_and_gadri|Section 3.3)). Contrastively, if we want to make explicit that they cooked "distributively", we say {lu'a by jo'u cy} using {lu'a} that will be discussed in ((|#Relation_between_lu_a_lu_o_lu_i_and_gadri|Section 3.3)). However, these arguments that says explicitly collectivity and/or distributivity are not always commonly used for other predicates like {jmaji} or {citka}.
The diagram bellow shows relations constructed with {me} and {jo'u} represented with a directed graph, in which the vertices represent plural constants.
{img fileId="7" thumb="y" rel="box[g]"}
!!!!# Individual
Referent of a plural constant is not necessarily plural: a plural constant can refer to one individual.
__An individual__ is defined as follows:
||
__X is an individual__ ~hs~|~hs~ =ca'e ~hs~|~hs~ ro'oi da poi ke'a me X zo'u X me da
||
where __ro'oi__ is an experimental cmavo proposed by ((xorxes|la xorxes)), which is a plural quantifier meaning "all". {ro'oi da} is a bound plural variable meaning "for all that can be substituted for {da}". This definition means that X is called an individual when the condition "for all {da} that are among X, X is among {da}" is satisfied. In other words, "in the universe of discourse, nothing other than {X} can be substituted for {da} such that {X me da}" is expressed by "X is an individual".
When each of X and Y is an individual, {X jo'u Y} is called __individuals__. When each of X and Y is an individual or individuals, {X jo'u Y} is called individuals as well.
!!!!# Difference between plural and singular
A plural constant that is an individual is called __singular constant__.
No matter whether each of X and Y is plural or singular, {X jo'u Y} is not a singular constant. It is because
^X me X jo'u Y ijenai X jo'u Y me X^
holds true, and then {X jo'u Y} does not satisfy the condition of an individual {ro'oi da poi ke'a me X jo'u Y zo'u X jo'u Y me da}.
!!!!# Bound singular variable
When the domain of a bound plural variable is restricted to what is an individual, the variable is called __bound singular variable__.
{ro da} (for all {da}) and {su'o da} (there is at least one {da}), which are officially defined in Lojban, are bound singular variables. They can be defined with bound plural variables as follows:
||
ro da ~hs~|~hs~ ro'oi da poi ro'oi de poi ke'a xi pa me ke'a xi re zo'u ke'a xi re me de
su'o da ~hs~|~hs~ su'oi da poi ro'oi de poi ke'a xi pa me ke'a xi re zo'u ke'a xi re me de
||
__su'oi__ is an experimental cmavo proposed by ((xorxes|la xorxes)), and is a plural quantifier meaning "there is/are". Note that {su'oi} is __not__ "at least one". {su'oi da} is a bound plural variable meaning "there is/are {da}".
For example, a plural constant {A jo'u B} can be in a domain of a bound plural variable, but it cannot be in a domain of a bound singular variable because it is not an individual.
!!!!# What is neither an individual nor individuals
Referent of a plural constant is not necessarily an individual or individuals.
It is possible to discuss a universe of discourse such that referent of a plural constant is neither an individual nor individuals.
For example, consider such a universe of discourse in which the following proposition holds true.
^ro'oi da poi ke'a me ko'a ku'o su'oi de zo'u de me da ijenai da me de ~--~ Condition_1^
In other words, in this universe of discourse, for all X such that {X me ko'a}, there is always Y such that {Y me X} and not {X me Y}.
;Theorem: In a universe of discourse where Condition_1 is true, {ko'a} is neither an individual nor individuals.
;Proof: Suppose {ko'a} is an individual. From the definition of "an individual":
^ro'oi da poi ke'a me ko'a zo'u ko'a me da ~--~ Supposition_2^
Replace {ro'oi da} with {naku su'oi da naku}:
^naku su'oi da poi ke'a me ko'a ku'o naku zo'u ko'a me da ~--~ Supposition_2-1^
Move the inner-most {naku} into the proposition:
^naku su'oi da poi ke'a me ko'a zo'u naku ko'a me da ~--~ Supposition_2-2^
Replace {su'oi da poi} with {ije} and move into the proposition:
^naku su'oi da zo'u da me ko'a ije naku ko'a me da ~--~ Supposition_2-3^
Replace {ije naku} with {ijenai}:
^naku su'oi da zo'u da me ko'a ijenai ko'a me da ~--~ Supposition_2-4^
By the way, from a property of {me},
^ko'a me ko'a ^
is always true. {ko'a} is therefore in the domain of {da} of Condition_1. Replace {ro'oi da} of Condition_1 with {ko'a}, and it thus holds true:
^su'oi de zo'u de me ko'a ijenai ko'a me de ~--~ Condition_1-1^
Condition_1-1 and Supposition_2-4 contradict each other.
Supposition_2 is thus rejected by reductio ad absurdum.
It means that {ko'a} is not an individual.
Moreover, when {ko'a} is expanded to {A jo'u B}, from a property of {jo'u}, the following statements hold true:
^A me ko'a~pp~
~/pp~B me ko'a^
Each of A and B is in the domain of {da} of Condition_1. Considering similarly to Condition_1-1, neither A nor B is an individual. {ko'a} is thus not individuals.
Q.E.D.
When {ko'a} is neither an individual nor individuals, what actually does it refer to?
We may interpret that it refers to what is refered to by a material noun, for example.
By a speaker who thinks that a cut-off piece of bread is also bread, bread is regarded as neither an individual nor individuals.
[https://groups.google.com/d/msg/lojban/RAtE7Yk-dqw/pCGeYCE9l1QJ|(Related discussion: for the case of {ko'a}={lo sidbo}, I wrote the same proof only in Lojban.)]
!!!!# A logical axiom on plural constant
The following logical axiom is given to an arbitrary plural constant C:
^ganai C broda gi su'oi da zo'u da broda^
It means "in a universe of discourse, if a proposition in which a plural constant is x1 of {broda} holds true, there is referent that is x1 of {broda}".
That is to say, an argument that has no referent in a universe of discourse cannot be represented by a plural constant. An argument that has no referent is expressed in the form {naku su'oi da}, which is a negation of a bound plural variable {su'oi da} meaning "there is/are".
!!# Definition of gadri
;__lo__ (LE): It is prefixed to selbri, and forms a plural constant that refers to what satisfies x1, the first place of the selbri. If a quantifier follows {lo}, the quantifier represents the sum of all the referents of the plural constant. In the case that a quantifier follows {lo}, a sumti may follow it, and the quantifier represents the sum of all the referents of the sumti.
||
lo [[PA] broda (ku) ~hs~|~hs~ zo'e noi ke'a broda [[gi'e zilkancu li PA lo broda] (ku'o) ~hs~|~hs~ what is/are broda [[that is/are PA in total]
lo PA ''sumti'' (ku) ~hs~|~hs~ lo PA me ''sumti'' (me'u) (ku) ~hs~|~hs~ what is/are among ''sumti'' that is/are PA in total
||
{ku}, {ku'o}, {me'u} are elidable terminators.
Putting a quantifier after gadri like {lo PA} is called __inner quantification__, and the quantifier is called __inner quantifier__. Although the term "quantify" is involved, it is different from quantification of logic. Inner quantification does not involve counting referents of constants that can be substituted for a variable, but counting all the referents of one plural constant. Inner quantification will be discussed more precisely in ((|#Inner_quantification|Section 3.1)).
On the other hand, putting a quantifier before gadri, or before a sumti more generally, is called __outer quantification__, and the quantifier is called __outer quantifier__. Outer quantification will be discussed more precisely in ((|#Outer_quantification|Section 3.2)).
All sumti formed with gadri are defined so that they are expanded into expressions with {zo'e}. That is to say, the most general plural constant is represented by a single {zo'e}. A sumti formed with gadri is {zo'e} acconpanied by an explanation.
^
;Example: People gathered, cooked and ate.
;: lo prenu cu jmaji gi'e jukpa gi'e citka^
While the predicate {jukpa} (cook) can be interpreted collectively as well as distributively, the plural constant {lo prenu} (people) does not say explicitly if it satisfies {jukpa} collectively or distributively. If we want to say explicitly that they "collectively" cooked, we use {loi}, which will be discussed later, and say {loi prenu}. Contrastively, if we want to say explicitly that they "distributively" cooked, we say {ro lo prenu} with an outer quantification, or {lu'a lo prenu}. However, a sumti that says explicitly collectivity or distributivity is not necessarily able to be shared with other predicate like {jmaji} or {citka}.
;__le__ (LE): {le broda} refers __specifically__ to a referent of {lo broda}, and __explicitly express that the speaker has the referent in mind__. Its logical property is the same as that of {lo}.
||
le [[PA] broda (ku) ~hs~|~hs~ zo'e noi mi ke'a do skicu lo ka ce'u broda [[gi'e zilkancu li PA lo broda] (ku'o)
le PA ''sumti'' (ku) ~hs~|~hs~ le PA me ''sumti'' (me'u) (ku)
||
;__la__ (LA): It is prefixed to selbri or cmevla, and forms a plural constant that refers to what is named the selbri or cmevla string. Its logical property is the same as that of {lo}.
||
la [[PA] broda (ku) ~hs~|~hs~ zo'e noi lu [[PA] broda li'u cmene ke'a mi (ku'o)
la PA ''sumti'' (ku) ~hs~|~hs~ zo'e noi lu PA sumti li'u cmene ke'a mi (ku'o)
||
;__loi__ (LE), __lei__ (LE), __lai__ (LA): {loi/lei/lai broda} refers to a referent of {lo/le/la broda}, and __explicitly express that the referent satisfies a predicate collectively__.
||
loi [[PA] broda ~hs~|~hs~ lo gunma be lo [[PA] broda
lei [[PA] broda ~hs~|~hs~ lo gunma be le [[PA] broda
lai [[PA] broda ~hs~|~hs~ lo gunma be la [[PA] broda
loi PA ''sumti'' ~hs~|~hs~ lo gunma be lo PA ''sumti''
lei PA ''sumti'' ~hs~|~hs~ lo gunma be le PA ''sumti''
lai PA ''sumti'' ~hs~|~hs~ lo gunma be la PA ''sumti''
||
Bacause {loi/lei/lai} is thus defined by another plural constant {lo gunma be lo/le/la}, it does not refer directly to referent of {lo broda} or {lo PA ''sumti''}, but referent of {lo gunma}. Therefore, even if {lo broda} or {lo PA ''sumti''} is not an individual, {loi broda} or {loi PA ''sumti''} can be an individual {lo gunma} under the following condition:
^ro'oi da poi ke'a me lo gunma be lo/le/la [[PA] broda zo'u lo gunma be lo/le/la [[PA] broda cu me da~pp~
~/pp~ro'oi da poi ke'a me lo gunma be lo/le/la PA ''sumti'' zo'u lo gunma be lo/le/la PA ''sumti'' cu me da^
;__lo'i__ (LE), __le'i__ (LE), __la'i__ (LA): {lo'i/le'i/la'i broda} refers to a set or sets of individual(s) that constitute(s) a plural constant {lo/le/la broda}. Because {lo'i/le'i/la'i} forms a set or sets, it is defined only when its/their member(s) {lo/le/la broda} is/are an individual or individuals. A set itself is always an individual, and sets are always individuals: there is no set that is not an individual.
||
lo'i [[PA] broda ~hs~|~hs~ lo selcmi be lo [[PA] broda
le'i [[PA] broda ~hs~|~hs~ lo selcmi be le [[PA] broda
la'i [[PA] broda ~hs~|~hs~ lo selcmi be la [[PA] broda
lo'i PA ''sumti'' ~hs~|~hs~ lo selcmi be lo PA ''sumti''
le'i PA ''sumti'' ~hs~|~hs~ lo selcmi be le PA ''sumti''
la'i PA ''sumti'' ~hs~|~hs~ lo selcmi be la PA ''sumti''
||
Because {lo'i/le'i/la'i} is defined by another plural constant {lo selcmi be lo/le/la}, it does not refer directly to referent of {lo broda} or {lo PA ''sumti''}, but referent of {lo selcmi}.
An empty set is {lo selcmi be no da}, and an expression {lo no broda} is officially meaningless (see ((|#Inner_quantification|Section 3.1)). This implies that an empty set cannot be expressed with {lo'i/le'i/la'i}.
!!!# Inner quantification
((BPFK Section: gadri|BPFK defines inner quantification)) as follows:
||
lo [[PA] broda ~hs~|~hs~ zo'e noi ke'a broda [[gi'e zilkancu li PA lo broda]
lo PA ''sumti'' ~hs~|~hs~ lo PA me ''sumti''
||
That is to say, inner quantifier means number of referent counted by unit {lo broda} or {lo me ''sumti''} that is x3 of {zilkancu}.
However, instead of {zilkancu}, the meaning of which is too vague for definition, [https://groups.google.com/d/msg/lojban/RAtE7Yk-dqw/xi2h6A17CusJ|an idea of redefinition using {mei} was suggested] as follows:
;Axiom 1: ro'oi da su'o pa mei
;Definition:||
(D1) ko'a su'o N mei ~hs~|~hs~ =ca'e ~hs~|~hs~ su'oi da poi me ko'a ku'o su'oi de poi me ko'a zo'u ge da su'o N-1 mei ginai de me da
(D2) ko'a N mei ~hs~|~hs~ =ca'e ~hs~|~hs~ ko'a su'o N mei gi'e nai su'o N+1 mei
(D3) lo PA broda ~hs~|~hs~ =ca'e ~hs~|~hs~ zo'e noi ke'a PA mei gi'e broda
||
Using these definitions and Axiom 1, the following theorem will be proved.
^If and only if {ko'a pa mei}, {ko'a} is an individual.^
;Proof: (D2) is
||
ko'a N mei |=| ko'a su'o N mei gi'e nai su'o N+1 mei
|=| ge ko'a su'o N mei -----(S1)
| | gi naku ko'a su'o N+1 mei -----(S2)
||
Applying (D1) to (S2),
||
(S2) |=| naku su'oi da poi me ko'a ku'o su'oi de poi me ko'a zo'u
| | ge da su'o N mei
| | ginai de me da
|=| ro'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'u
| | naku ge da su'o N mei
| | gi naku de me da
|=| ro'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'u
| | ganai da su'o N mei
| | gi de me da
||
(D2) is therefore
||
ko'a N mei |=| ge (S1) gi (S2)
|=| ge ko'a su'o N mei
| | gi ro'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'u
| | ganai da su'o N mei
| | gi de me da
||
When N=1,
||
ko'a pa mei |=| ge ko'a su'o pa mei
| | gi ro'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'u
| | ganai da su'o pa mei
| | gi de me da
||
Because of Axiom 1, it implies
||
ko'a pa mei |=| ro'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'u de me da
||
The right side implies {ro'oi da poi ke'a me ko'a zo'u ko'a me da}, which is the condition for "{ko'a} is an individual". Its converse is also true.
Q.E.D.
The diagram below shows a procedure of counting something up to four represented with a directed graph. In this diagram, loops such as {X me X} are omitted for simplicity, though they exist. Counting up corresponds to selecting a subgraph of a directed graph formed with {me}: the subgraph that has a form of tree that includes all leaves (constants each of which is an individual) to be counted, for example the part of magenta color in the diagram.
{img fileId="10" thumb="y" rel="box[g]"}
!!!!# Repeating inner quantification
Because {lo PA ''sumti''} is defined, we can repeat inner quantification to form an argument.
^
;Example: lo mulno kardygri cu gunma lo vo loi paci karda ~hs~ ''A full deck consists of four groups of thirteen cards.''
;: su'o da zo'u loi re lo'i ro mokca noi sepli py noi mokca ku'o da cu relcuktai ~hs~ ''Two sets of points that are equidistant from a point P is a double circle.''^
!!!!# Problems on inner quantification
!!!!!# Cannot say zero
Because an argument formed by gadri is a plural constant, {lo broda} implies {su'oi da zo'u da broda} according to the logical axiom on plural constant shown in ((|#A_logical_axiom_on_plural_constant|Section 2.2.6)). That is to say, the expression {lo no broda} implies "there are what are broda, which are counted 0", which seems meaningless.
This means that official Lojban cannot express negation of existence of plural variable {naku su'oi da}, which is nevertheless necessary, for example in the following situation:
^ lo xo prenu cu jmaji gi'e jukpa gi'e citka ~hs~~--~ no~pp~
~/pp~''"How many people gathered, cooked and ate?" "zero."''^
This response is an abbreviated form of {lo no prenu cu jmaji gi'e jukpa gi'e citka}.
This proposition means that {lo no prenu} satisfies selbri {jmaji} collectively and (je) non-distributively, {jukpa} collectively or (ja) distributively, {citka} non-collectively and (je) distributively. Because it includes selbri {jmaji} to be satisfied non-distributively, the sumti cannot be replaced by negation of existence of bound singular variable {naku su'o da}={no da}. Moreover, because it includes selbri {citka} to be satisfied non-collectively, {lo} of the sumti cannot be replaced by {loi}={lo gunma be lo}.
For making such a proposition meaningful, it is essential to give an expression {lo no broda} a meaning of negation of existence of plural variable.
For this purpose, I suggest the following definition valid in the case that PA=0 for {lo PA broda}.
;Unofficial definition of {lo no broda}:||
lo no broda ~hs~|~hs~ =ca'e ~hs~|~hs~ naku su'oi da poi ke'a broda
||
(If it were defined as {naku lo broda}, the negation would have spanned the whole proposition, and it would not have implied quantification. I abandoned therefore such a definition.)
!!!!!# Cannot quantify material noun or something
Axiom 1 of ((|#Inner_quantification|Section 3.1)) excludes sumti that is neither an individual nor individuals from expressions {(su'o) N mei} and {lo N broda}.
Can we use {piPA} for sumti that is neither an individual nor individuals, then? No.
((BPFK Section: gadri|Actually, piPA is defined only for outer quantification.))
||
piPA ''sumti'' ~hs~|~hs~ lo piPA si'e be pa me ''sumti''
||
As we can see in the definition, the body of outer quantification by {piPA} is plural constant {lo piPA si'e}, which is not a bound singular variable. However, x2 of {piPA si'e} is {pa me ''sumti''}, to which ((BPFK Section: gadri|the defintion of PA broda)) is applied:
||
PA broda ~hs~|~hs~ PA da poi broda
||
As a result, {piPA ''sumti''} is defined only when there is an individual that satisfies x1 of {me ''sumti''}. That is to say, what is neither an individual nor individuals is excluded also from an expression of outer quantification with {piPA}.
What would be if {piPA} were defined also for inner quantification?
In that case, the following definition would be desirable to conform the definition of {piPA} of outer quantification:
; Unofficial definition of {piPA} of inner quantification:||
lo piPA broda ~hs~|~hs~ =ca'e ~hs~|~hs~ zo'e noi ke'a piPA si'e be lo pa broda
||
This definition of {piPA} of inner quantification still excludes what is neither an individual nor individuals unless {lo pa broda} can express what is neither an individual nor individuals.
Why don't we use {PA si'e} to express quantification of what is neither an individual nor individuals?
It is possible, but ((BPFK Section: Numeric selbri|BPFK's current definition of {si'e})) depends on {pagbu}:
||
x1 number si'e x2 ~hs~|~hs~ x1 pagbu x2 gi'e klani li number lo se gradu be x2
||
If we interpret {pagbu} so that x1 is not larger than x2 (and this is ordinary interpretation), [https://groups.google.com/d/msg/lojban/RAtE7Yk-dqw/nUbZiwmB2M0J|{si'e} is very inconvenient because the unit should be changed every time counting up.] If {si'e} were defined so that PA of {PA si'e} could be larger than 1, {si'e} would have been pragmatic for quantification of what is neither an individual nor individuals.
Besides those considerations, if we abandon Axiom 1 of ((|#Inner_quantification|Section 3.1)), Definitions (D1) (D2) (D3) can be applied to what is neither an individual nor individuals.
In this case, a speaker should select some plural constants, and define them to be {ko'a} such that {ko'a su'o pa mei}; the selection must be done attentively so that plural constants that are {pa mei} do not overlap with each other.
Those preparation of {ko'a} and (D2) implies only
||
ganai ko'a pa mei
gi ro'oi de poi me ko'a zo'u de me ko'a
||
Under these conditions, there is no need that {ko'a} of {ko'a pa mei} is an individual.
When we use Definitions (D1) (D2) (D3) without using Axiom 1 of ((|#Inner_quantification|Section 3.1)), a condition {gi'e su'o pa mei} must be added to {de} of (D1)(When Axiom 1 is used, referents in the domain of variable {de} satisfies this condition automatically).
;Unofficial definitions under the condition that Axiom 1 is abandoned:||
(D1') ko'a su'o N mei ~hs~|~hs~ =ca'e ~hs~|~hs~ su'oi da poi me ko'a ku'o su'oi de poi me ko'a gi'e su'o pa mei zo'u ge da su'o N-1 mei ginai de me da
(D2) ko'a N mei ~hs~|~hs~ =ca'e ~hs~|~hs~ ko'a su'o N mei gi'e nai su'o N+1 mei
(D3) lo PA broda ~hs~|~hs~ =ca'e ~hs~|~hs~ zo'e noi ke'a PA mei gi'e broda
||
Using these definitions, inner quantification of what is neither an individual nor individuals becomes possible. Moreover, "Unofficial definition of {piPA} of inner quantification" discussed above becomes able to be applied to what is neither an individual nor individuals.
The diagram below shows a procedure of counting up what is neither an individual nor individuals represented with a directed graph. In this diagram, loops such as {X me X} are omitted for simplicity, though they exist. Among infinite number of vertices (plural constants), the vertices that a speaker selected as {su'o pa mei} are colored pink. Counting up corresponds to selecting a tree that is a subgraph of a directed graph formed with {me}, for example the part of blue color in the diagram.
{img fileId="9" thumb="y" rel="box[g]"}
!!!# Outer quantification
外部量化は以下のように定義される。
||
PA ''sumti'' ~hs~|~hs~ PA da poi ke'a me ''sumti''
PA broda ~hs~|~hs~ PA da poi broda
piPA ''sumti'' ~hs~|~hs~ lo piPA si'e be pa me ''sumti''
||
{piPA} 以外の外部量化は {PA da} であり、これは公式には束縛単数変項である。 従ってこれらの項が__分配的に__述語を満たすことに注意しなければならない。 例えば {jmaji} (集まる)の x1 として {ci lo prenu} という項を使うのは無意味である。 3人のそれぞれが「集まる」という述語を満たしているわけではないからだ。
ただし PA として非公式の複数量化子 {ro'oi} や {su'oi} などを使えば、束縛複数変項にすることは可能だ。 例えば
^su'oi prenu cu jmaji ~hs~ 集まる人が存在する^
この文は内部量化の
^lo prenu cu jmaji ~hs~ 人が集まる^
から((|#A_logical_axiom_on_plural_constant|2.2.6節))の論理公理によって含意される文に等しい。
{PA lo broda} と {PA broda} は、束縛単数変項に当てはまる指示対象を数えるときの変域が異なる。 外部量化の定義から以下のことが言える。
||
PA lo broda ~hs~|~hs~ PA da poi ke'a me lo broda ~hs~|~hs~ 議論領域の中の lo broda という複数定項の指示対象が束縛単数変項の変域であり、そのうちのPA個
PA broda ~hs~|~hs~ PA da poi ke'a broda ~hs~|~hs~ 議論領域の中の全ての broda なものが束縛単数変項の変域であり、そのうちのPA個
||
^
;例1: ro jmive ba morsi ~hs~ ''生きものは皆死ぬ''
;例2: ro lo prenu ti klama ~hs~ ''全員ここに来る''^
例1では議論領域内の全ての {jmive} なものについて言っている。 例2の議論領域内には、この文の複数定項 {lo prenu} の指示対象以外にも {prenu} なものがあると考えて構わない。
{piPA} による外部量化は、{lo piPA si'e} という複数定項を表す。 ただし {piPA si'e} の x2 として {pa me ''sumti''} という外部量化を含んでいる。 この定義に出てくる {pi} は「1より大きくない」ということを表すものであり、実際の表現では {pi} の代わりに {fi'u} などを用いても構わない。
!!!!# Combination of outer and inner quantifications
内部量化と外部量化の定義から、以下のことが言える。
||
M lo [[N] broda ~hs~|~hs~ [[N個の] lo broda のうちの M個 (それらが分配的に述語を満たす)
M loi [[N] broda ~hs~|~hs~ [[N個の] lo broda からなる lo gunma M個 (それらが分配的に述語を満たす)
M lo'i [[N] broda ~hs~|~hs~ [[N個の] lo broda からなる lo selcmi M個 (それらが分配的に述語を満たす)
pi M lo [[N] broda ~hs~|~hs~ [[N個の] lo broda のうちの 1個の一部分で、その量は pi M si'e
pi M loi [[N] broda ~hs~|~hs~ [[N個の] lo broda からなる lo gunma 1個 の一部分で、その量は pi M si'e
pi M lo'i [[N] broda ~hs~|~hs~ [[N個の] lo broda からなる lo selcmi 1個 の一部分(部分集合)で、その量は pi M si'e
||
これらのうちの {M lo [[N] broda} や {pi M loi [[N] broda} を使って、複数のものの一部を表現することができる。
^
;例1: re lo [[ci] mlatu mi viska ~hs~ ''[[3匹の]猫のうちの2匹がこっちを見ている''
;例2: re fi'u ci loi [[vei ci pi'i ny (ve'o)] mlatu mi viska ~hs~ ''[[3n匹の]猫のうちの3分の2がこっちを見ている''^
例1の {re lo [[ci] mlatu} は {lo [[ci] mlatu} の指示対象である(3匹の)猫のうちの2匹を指す。
内部量化子の {ci} が無い場合は {lo mlatu} の指示対象が何匹の猫であるか不明だが、それでもとにかく {re lo mlatu} はそれらの猫のうちの2匹を指す。
例2では {loi} が使われているので、 その指示対象の実体は {lo gunma} である。 例2を {loi} と {piPA ''sumti''} の定義に従って展開すれば
^
;例2-1: lo re fi'u ci si'e be pa me lo gunma be lo [[vei ci pi'i ny (ve'o)] mlatu mi viska^
つまり {re fi'u ci loi...} は {pa me lo gunma...} という「個」のうちの3分の2を指す。 その {lo gunma} は {vei ci pi'i ny (ve'o)} 匹の猫からなる。
内部量化子が無い場合は {loi mlatu} が何匹の猫からなる {lo gunma} を指すのか不明だが、それでもとにかく {re fi'u ci loi mlatu} はその {lo gunma} の3分の2を指す。 ただし
^re fi'u ci loi mlatu mi viska^
という文は、この {loi mlatu} の構成要素である猫の個体数が3の倍数でなければ意味をなさない。 猫の切れ端が {viska} という述語を満たすようなことは考えにくいからだ。
またBPFKの解釈では非集団的に述語を満たす複数定項を {loi} で表すことはできないから、「猫が非集団的にこっちを見ている」ということを言いたい場合は {loi} を使わない表現にするか、あるいは((|#Relation_between_lu_a_lu_o_lu_i_and_gadri|3.3節))に説明する {lu'a} を使って
^lu'a re fi'u ci loi mlatu mi viska^
とする。
!!!# Relation between lu'a, lu'o, lu'i and gadri
((BPFK Section: Indirect Referers)) ではLAhE類の {lu'a}, {lu'o}, {lu'i} が以下のように定義されている。
||
lu'a ''sumti'' ~hs~|~hs~ lo me ''sumti'' ~hs~|~hs~ lo cmima be ''sumti'' [[noi selcmi]
lu'o ''sumti'' ~hs~|~hs~ loi me ''sumti''
lu'i ''sumti'' ~hs~|~hs~ lo'i me ''sumti''
||
しかし同ページに書かれた英語の説明から察すれば、この {lu'a} の定義は不足であり、 {lu'o} の定義はいくらか問題を含む。
{lu'a} は、{lo selcmi} であるような項からは {selcmi} の x2 を抽出し、 {lo gunma} であるような項からは {gunma} の x2 を抽出する。 さらに {lu'a} は、項が分配的かつ非集団的に述語を満たすことを明示する。 一方 {lo} の定義によれば、 {lo me ''sumti''} という表現は「分配的かつ非集団的に」ということを含意しない。
また {lu'o} は非分配的かつ集団的に述語を満たすことを明示する。 一方 {loi} の定義によれば、 {loi me ''sumti''} は集団的に述語を満たす項を構成するが、それが非分配的に述語を満たすかどうかまでは明言していない。 整合性を追求するなら、 {loi} の定義に「非分配的に述語を満たす」ということを追記するのが良いだろう。
以上の考えに基づいて、以下のような定義を提案する。
; {lu'a} の非公式な定議案:||
lu'a ''sumti'' ~hs~|~hs~ lo cmima be ''sumti'' noi selcmi ku onai lo se gunma be ''sumti'' noi gunma ku onai lo me ''sumti'' ku ~pp~
~/pp~ ~hs~ vu'o noi su'o da zo'u da me ke'a gi'e no'a
||
ここに現れる {vu'o} 以降の {noi} 節では、 {lu'a ''sumti''} の指示対象が分配的にこの項を含む文を満たすことを説明している。
!!# Notes
以下の話は解説者 guskant の覚書であり、 gadri の理解のために全く重要ではない。
!!!# About ontology
^((BPFK Section: gadri|Positive impact: Some usages that make little sense with {lo}={su'o} become validated.))^
{lo}={su'o} ではなくなったが、 {lo broda} が複数定項であることと、((|#A_logical_axiom_on_plural_constant|2.2.6節))の複数定項に関する論理公理によって、 {lo broda cu brode} という命題は、 {su'oi da brode} という命題を暗黙的に含意している。
!!!# claxu x2
^((BPFK Section: gadri|le cmana __lo__ cidja ba claxu))~pp~
~/pp~ ''山には食べ物がないだろう''~pp~
~/pp~((lapoi pelxu ku'o trajynobli))^
{lo cidja} を展開すると
^le cmana zo'e noi ke'a cidja ku'o ba claxu^
((BPFK Section: Subordinators|{noi} の定義))により
^le cmana zo'e to ri xi rau cidja toi ba claxu^
{to} {toi} 内は挿入句だから、 bridi 本体は
^le cmana zo'e ba claxu^
{zo'e} は複数定項である。 ((|#A_logical_axiom_on_plural_constant|2.2.6節))の複数定項に関する論理公理により、この命題は
^su'oi da zo'u le cmana da ba claxu^
を含意する。つまり「この山に欠く何か」の指示対象が議論領域内に存在する。
この表現の奇妙さは、 {claxu} の x2 に、非存在を表すような意味合いがあるかのように見えることから生じる。
辻褄が合うように解釈するならば、 {claxu} 自体は x2 の指示対象の所在が x1 に位置していないということを表しているだけで、議論領域内の存在については何も主張しないと考えれば良い。
!!!# zo'e is a plural constant
仮に、 {zo'e} が自由変項・束縛複数変項・複数定項のどれにでもなれるという解釈をすれば、論理学的な観点から合理的である。
しかしこの考えは、[https://groups.google.com/d/topic/lojban/RAtE7Yk-dqw/discussion|この議論]の中で、明確に否定された。 公式解釈による {zo'e} は常に複数定項であることが明らかになった。
以下にこれらの考えを比較検討し、 {zo'e} が複数定項であるという公式解釈から生じる問題点の解消を試みる。
!!!!# If zo'e chould be a bound plural variable
「{zo'e} は本質的には自由変項であり、文脈に応じて議論領域が決まり、議論領域に応じて、 {zo'e} に何らかの定項が代入されているか、複数量化子によって量化されていると見なされる」という解釈をすると仮定した場合の、利点と欠点を挙げる。
!!!!!# Merits
この仮定の下では、 {lo PA broda} における PA=0 の場合を、((|#Cannot_say_zero|3.1.2.1節))の定議案のように特異点扱いする必要は無かった。 {lo PA broda} が本来自由変項であれば、 PA>0 のときは複数定項が代入されるか、 {su'oi da} などの複数量化子によって束縛され、 PA=0 のときには {naku su'oi da} によって束縛されると解釈すれば良かったからである。
この解釈は、 PA=0 の時のみならず、 PA>0 についても、より自然言語に近い解釈を可能にする。例えば
^lo ci xanto cu zilkancu li ci lo xanto^
この最後に出てくる方の {lo xanto} は数えの単位であるから、特定のものを指さずに(つまり定項と見なさずに)、むしろ複数量化によって「1」と量化されている束縛複数変項と解釈するほうが自然である。
束縛複数変項と解釈する場合には、他の量化項や {naku} との相対的な出現順序を考慮しなければならないが、項である以上、冠頭に出すこともできるので、冠頭でその順序を明記することも可能である。
さらに、この考え方は、文脈のない文の真理値が一般には不定であるという自然言語の性質を体現してもいる。 「{zo'e} が本質的には自由変項であり、文脈によって束縛されたり定項が代入されたりしている」と解釈しておけば、論理性も解釈上の構造美も損なわずに、ロジバン文の自然な表現が可能だった。
!!!!!# Demerits
{zo'e} が文脈によって自由変項だったり、束縛複数変項だったり、複数定項だったりするので、単一のbridiからは、その中の項がどのような項であるかを判断できず、文の真理値を判断することができない。
ただし、このように、文の真理値が文脈に依存するという側面は、あらゆる自然言語が共有する性質である。
また、 {zo'e} が複数定項だけを表すという現行解釈を取るにしても、「何らかの議論領域が与えられている」ということが判断出来るだけで、文脈がわからなければ、どんな議論領域かを判断できないのだから、文脈無しでは文の真理値を判断できないという問題が解消されるわけではない。
!!!!# Problems caused by the fact that zo'e is a plural constant and the counter-measures
公式解釈による {zo'e} は複数定項であるから、以下のような問題点が生じる。
!!!!!# Cannot express plural quantification of non-exsistence
{lo no broda} の合理的な解釈は、公式にはロジバンから追放される。 つまり、複数量化では当然扱える「{da} に当てはまるものが存在しない {naku su'oi da}」に相当する表現が、ロジバンでは公式には扱えない。 {lo no broda} という表現をしたい場合には、((|#Cannot_say_zero|3.1.2.1節))のように、非公式の解釈をする必要がある。
!!!!!# Cannot express bound plural variable, which does not specify a referent
{lo PA broda} が、文脈によっては束縛複数変項であるという解釈が不可能になったので、 数えの単位のような、特定のものを指さないはずの項も、何らかの定項であると解釈しなければいけなくなった。 例えば、
^lo ci xanto cu zilkancu li ci lo xanto^
のように、数えの単位としての {lo xanto} を命題の中で使うために、 メートル原器のような、なんらかの「ゾウ原器」を議論領域の中に想定するという、いささか不自然かもしれない解釈が強いられる(現代ではもはやメートル原器さえ用いられていないにも関わらず)。
!!!!!# Cannot express elementary particles with lo
{lo broda} が複数定項として解釈される限り、以下のロジバン文は無意味である:
^lo guska'u cu gau jmaji sepi'o lo lenjo gi'e pagre lo fenra~pp~
~/pp~''光子がレンズで集められ、スリットを通り抜ける''^
なぜなら実際のところ、光子は個であり、個数を数えることはできるのだが、この光子とあの光子といった区別をすることはできない、つまり、「特定の」光子を指すことは不可能だからだ。 光子などの素粒子を表す項には、量化表現こそが相応しい。ところがロジバンには公式には複数量化子が無いので、上記のように selbri を集団的にも分配的にも満たすような項として、量化を明示することはできない。 {lo broda} が複数定項であると宣言されたので、 {lo guska'u} を束縛複数変項として解釈する余地も残されていない。 解決策としては、 ((xorxes|la xorxes)) が提案した非公式の複数量化子 {su'oi} を使うしかない。
^su'oi da poi ke'a guska'u cu gau jmaji sepi'o lo lenjo gi'e pagre lo fenra^
!!!!!# How to interpret a prevailing view
((BPFK Section: gadri|BPFK の gadri のページ))の例文にも出ている、
^lo pa pixra cu se vamji lo ki'o valsi~pp~
~/pp~''1枚の写真は1000語に値する'' ^
といった一般論においても、 {lo pa pixra} や {lo ki'o valsi}
は何か特定のものを指していると解釈される。 議論領域の中に、一般論に登場する sumti 用の、何らかの指示対象を用意しておかなければならない。
直感的には {lo} ではなく {lo'e} を使えば良いが、((BPFK Section: Typicals|現状では {lo'e} と {lo} の関係について結論が出ていない))ので、 {lo'e} について論理学的な観点から説明することはまだできない。
あるいは、一般論の表現において指示対象への明言を避ける方法として、命題全体を NU類の中に入れるという方法が考えられる。 NU類内の命題の真理値は、 NU類外の命題の真理値に影響を及ぼさないからである(指示的に不透明 referentially opaque; [http://ponjbogri.github.io/cll-ja/chapter9.html#9.7|CLL9.7]などと関連する)。 言い換えれば、NU類内部の命題の議論領域はNU類外部の命題の議論領域と異なる。
この方法を採用して、上記のことわざを表すなら、例えば {si'o} を使って
^si'o lo pa pixra cu se vamji lo ki'o valsi ~pp~
~/pp~''「1枚の写真は1000語に値する」という概念だ''^
という形にすれば良い。 {si'o} の x1 は暗黙の {zo'e} であり、複数定項として議論領域の中に指示対象を持つ。 一般論の解釈として、 {si'o} の x1 に入る指示対象を想定することは、 {lo pa pixra} や {lo ki'o valsi} の指示対象を想定するよりも自然である。
(((The Complete Lojban Language)) では、このように terbri を明言しない bridi を「観察文」と呼んでいるが、ここで述べた用法では、この発話が特定の外部刺激 (stimulus) によって常に起こるものとは言えないから、観察文とする解釈は妥当ではない。)
!!!!!# How to express free variables
慣習として、単語の定義などではKOhA4類の ko'V/fo'V シリーズが自由変項として使われている。 ただし本来これらは複数定項である。
この慣習に従わずに自由変項を使った文(開文)を表現したい場合は、 {ke'a} か {ce'u} を使うのが妥当だ。
なぜなら、これらを terbri とする bridi の真理値は決まらないからだ。
{ke'a} が2回以上現れる bridi では、 {ke'a} が同一の項を表すと見なされる:
^da poi ke'a gy xlura ke'a cu panci lo ka'e se citka~pp~
~/pp~~--~ ((lo nu binxo))^
一方、 {ce'u} が2回以上現れる bridi では、 {ce'u} が同一の項を表すとは限らない:
^lo mamta jo'u lo mensi cu simxu lo ka ce'u cisma fa'a ce'u~pp~
~/pp~~--~ ((lo nu binxo))^
この性質を考慮すると、全く文脈のない状況で自由変項を使った開文を表現するには、「同一の項」という制限がある {ke'a} よりも、制限のない {ce'u} の方が使いやすい。
^ce'u ce'u citka~pp~
~/pp~''「A は B を食べる」'' (開文、真理値不定)^
_______________________________________________
Wikineurotic mailing list
Wikineurotic@lojban.org
http://mail.lojban.org/mailman/listinfo/wikineurotic