[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Wikineurotic] Wiki page BPFK Section: Non-logical Connectives changed by Ilmen



The page BPFK Section: Non-logical Connectives was changed by Ilmen at 13:18 CEST
Comment: JOI can take more than two sumti by chaining up several of them.

You can view the page by following this link:
 
http://www.lojban.org/tiki/BPFK%20Section%3A%20Non-logical%20Connectives

You can view a diff back to the previous version by following this link: 
http://www.lojban.org/tiki/tiki-pagehistory.php?page=BPFK%20Section%3A%20Non-logical%20Connectives&compare=1&oldver=13&newver=14


***********************************************************
The changes in this version follow below, followed after by the current full page text.
***********************************************************


+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
@@ -Lines: 51-55 changed to +Lines: 51-55 @@
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

!!!Definition
- Non-distributive group. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and non-distributively.
+ Non-distributive group. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and non-distributively. More than two sumti may be joined into one sumti by chaining up additional { joi ''SUMTI'' }.

!!!Keywords

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
@@ -Lines: 70-74 changed to +Lines: 70-74 @@
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

!!!Definition
- Joins two sumti into one sumti. The referent of the resulting sumti is the set whose members are the referents of both sumti considered jointly.
+ Joins two sumti into one sumti. The referent of the resulting sumti is the set whose members are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { ce ''SUMTI'' }. Thus, {X ce Y ce Z} creates one single set containing X, X and Z.

!!!Keywords

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
@@ -Lines: 83-87 changed to +Lines: 83-87 @@
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

!!!Definition
- Joins two sumti into one sumti. The referent of the resulting sumti is the sequence whose members are the referents of both sumti considered jointly.
+ Joins two sumti into one sumti. The referent of the resulting sumti is the sequence whose members are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { ce'o ''SUMTI'' }.

!!!Keywords

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
@@ -Lines: 98-102 changed to +Lines: 98-102 @@
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

!!!Definition
- Union of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the union of the sets referred to by each sumti.
+ Union of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the union of the sets referred to by each sumti. More than two sumti may be joined into one sumti by chaining up additional { jo'e ''SUMTI'' }.

!!!Keywords

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
@@ -Lines: 111-115 changed to +Lines: 111-115 @@
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

!!!Definition
- Intersection of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the intersection of the sets referred to by each sumti.
+ Intersection of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the intersection of the sets referred to by each sumti. More than two sumti may be joined into one sumti by chaining up additional { ku'a ''SUMTI'' }.

!!!Keywords




***********************************************************
The new page content follows below.
***********************************************************

!Proposed definitions



{BOX()}

!! jo'u (JOI)



!!!Definition

And. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { jo'u ''SUMTI'' }.



!!!Keywords

* And



!!!Examples

;.i mi jo'u la .clsn. cu ciksi tu'a lo cmavo be zo coi:''Me and Shoulson are explaining about the cmavo of selma'o COI.''



;lo za'e tridu cu mixre lo tricu jo'u lo tcidu:''A 'treeder' is a mixture of a tree and a reader.''

{BOX}



{BOX()}

!! ju'e (JOI)



!!!Definition

Vague connective. Joins two sumti into one sumti. The referent of the resulting sumti is some function of the referents of both sumti. More than two sumti may be joined into one sumti by chaining up additional { ju'e ''SUMTI'' }.



!!!Keywords

*Vague connective



!!!Examples

;mi'a casnu zo jetnu ju'e zo fatci ju'e lo si'o jetnu ku ju'e lo si'o fatci:''We are discussing about "truth"/"fact"/truth/fact.'' (IRC, Eimi, 22 Dec 2008 07:40:19)



:.i ji'a co'e lo plise ju'e lo perli ju'e lo drata:''Also an apple and a pear.'' (IRC, xalbo, 5 Oct 2010 12:50:22)



{BOX}



{BOX()}

!! fa'u (JOI)



!!!Definition

Respectively. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and distributively in correspondence with another term.



!!!Keywords

*Respectively



!!!Examples

;mi fa'u do klama lo zdani fa'u lo zarci:''Me and you go home and to the market, respectively.''



;li pano fa'u li cinono cu jdima lo nu klama fu lo girzu karce fa'u lo vinji:''Ten and three-hundred are the prices of going by bus and by plane, respectively.''

{BOX}



{BOX()}

!!joi (JOI)



!!!Definition

Non-distributive group. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and non-distributively. More than two sumti may be joined into one sumti by chaining up additional { joi ''SUMTI'' }.



!!!Keywords

* Both

* Together with

* And



!!!Example

;mi joi ry. ze'a casnu lo lijda ctuca tadji:''Me and R have been discussing religious teaching methods.''



;la .djan. joi la .pitr. cu re mei:''John and Peter are two.''



;la jegvon cu cevni le xriso joi le xebro joi le muslo:''Jehovah is the god of the Christians, the Jews and the Muslims.''

{BOX}



{BOX()}

!!ce (JOI)



!!!Definition

Joins two sumti into one sumti. The referent of the resulting sumti is the set whose members are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { ce ''SUMTI'' }. Thus, {X ce Y ce Z} creates one single set containing X, X and Z.



!!!Keywords

* And (set)



!!!Examples

;.abu ce by ce cy vasru .abu ce by:''{a, b, c} ⊇ {a, b}''

{BOX}



{BOX()}

!!ce'o (JOI)



!!!Definition

Joins two sumti into one sumti. The referent of the resulting sumti is the sequence whose members are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { ce'o ''SUMTI'' }.



!!!Keywords

* And (sequence)



!!!Examples

;jukpa ce'o citka lo cersai co'o ru'e:''Making and eating breakfast, bye for now.''



;.abu ce'o by cu mleca cy ce'u dy .ijo ge .abu mleca cy gi by mleca dy:''(a,b) ≤ (c,d) if and only if a ≤ c and b ≤ d''

{BOX}



{BOX()}

!!jo'e (JOI)



!!!Definition

Union of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the union of the sets referred to by each sumti. More than two sumti may be joined into one sumti by chaining up additional { jo'e ''SUMTI'' }.



!!!Keywords

* Union



!!!Examples

;lo'i brivla cu du lo'i gismu jo'e lo'i fu'ivla jo'e lo'i lujvo to po'o xu toi:''The set of brivla is equal to the union of the set of gismu and the set of fu'ivla and the set of lujvo (only?).''

{BOX}



{BOX()}

!!ku'a (JOI)



!!!Definition

Intersection of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the intersection of the sets referred to by each sumti. More than two sumti may be joined into one sumti by chaining up additional { ku'a ''SUMTI'' }.



!!!Keywords

*Intersection



!!!Examples

;xy cmima .abu ku'a by .ijo ge xy cmima .abu gi xy cmima by:''x ∈ A ∩ B if and only if x ∈ A and x ∈ B.''

{BOX}



{BOX()}

!!pi'u (JOI)



!!!Definition

Cross product of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the cross product of the sets referred to by each sumti.



!!!Keywords

* Set Product

* Cartesian Product



!!!Examples

;le'i bebna ku pi'u le'i mabla sidbo ku cu barda:''The cross product of the set of silly things and the set of bad ideas is large.''

{BOX}



{BOX()}

!!Formal definitions



||

''sumti1'' ju'e ''sumti2'' | = lo co'e be ''sumti1'' bei ''sumti2''

''sumti1'' jo'u ''sumti2'' | = lo suzmei noi ''sumti1'' .e ''sumti2'' .e no drata be ''sumti1'' .e ''sumti2'' cu me ke'a

''sumti1'' joi ''sumti2'' | = lo gunma be ''sumti1'' .e ''sumti2'' .e no drata be ''sumti1'' .e ''sumti2''

''sumti1'' ce ''sumti2'' | = lo se cmima be ''sumti1'' .e ''sumti2'' .e no drata be ''sumti1'' .e ''sumti2''

''sumti1'' ce'o ''sumti2'' | = lo porsi be fi ''sumti1'' jo'u ''sumti2'' be'o noi ''sumti1'' lidne ''sumti2'' ke'a



''sumti1'' jo'e ''sumti2'' | = lo selcmi noi ro cmima be ke'a cu cmima ''sumti1'' .a ''sumti2''

''sumti1'' ku'a ''sumti2'' | = lo selcmi noi ro cmima be ke'a cu cmima ''sumti1'' .e ''sumti2''

''sumti1'' pi'u ''sumti2'' | = lo selcmipi'i be ''sumti1'' bei ''sumti2''



''sumti1'' fa'u ''sumti2'' ''sumti3'' fa'u ''sumti4'' ''selbri'' == ''sumti1'' ''sumti3'' ''selbri'' .i ''sumti2'' ''sumti4'' ''selbri''



||



!!Notes



# The definitions given correspond to their use as sumti connectives. Other uses (when they make sense) have yet to be added.




_______________________________________________
Wikineurotic mailing list
Wikineurotic@lojban.org
http://mail.lojban.org/mailman/listinfo/wikineurotic