I don't yet understand how the definitions on {PA mei} could suggest implicit atomicity.The definitions on the topic are:(D1) ko'a su'o N mei := su'oi da poi me ko'a ku'o su'oi de poi me ko'a zo'u ge da su'o N-1 mei gi de na me da(D2) ko'a N mei := ko'a su'o N mei gi'e nai su'o N+1 mei(D3) lo PA broda := zo'e noi ke'a PA mei gi'e brodaFor precise definitions on {PA mei}, we need therefore an explicit definition of {ko'a su'o pa mei} besides (D1).
Once {ko'a su'o pa mei} is defined in some way, (D2) and (D3) are valid for an integer N>=1. (D2) is expanded as follows:[...]Then {ko'a N mei} implies alsoro'oi de poi me ko'a zo'u de me ko'a
When N=1,ko'a pa mei= ge ko'a su'o pa meigi ro'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'uganai da su'o pa meigi de me da
In every derivation from (D1) and (D2), {ko'a} may have {ko'e} such that {ko'e me ko'a ijenai ko'a me ko'e}.
As a reasonable definition for {ko'a su'o pa mei}, I would suggest as follows:(D1-1) ko'a su'o pa mei := su'oi da poi me ko'a ku'o ro'oi de poi me ko'a zo'u de me da
(D1-1) says nothing related the number one, but it reflects a property of one-some of non-individual: any non-individual sumti can be one-some. Once non-individual B such that {B me ko'a} is fixed as one-some {B pa mei}, and if C such that {C me ko'a} satisfies conditions (D1) and (D2), C is counted to be an integer, and it is meaningful: at least, an order of cardinality is given to the pair of B and C.
It may be off topic, but if there were a definition for inner fractional quantifier{lo piPA broda} =ca'e {zo'e noi ke'a piPA si'e be lo pa broda}then the language would be richer; this definition would be avaiable both atomist and non-atomist.Actually, an outer fractional quantifier {piPA sumti} =ca'e {lo piPA si'e be pa me sumti} is available to atomists only.